

To: Great Northern Trail Association:

The St. Anthony Bight Local Service District had our annual general meeting, and we had a discussion about the proposed trail from St. Anthony Bight to St. Carol's and the committee supports it in its entirety.

Parking should not be an issue; we have the community hall parking lot. There is also a section at the end of the community that if the trail association wanted to place a couple loads of fill to widen out the shoulder for parking than it can and would be at the beginning of the trail.

If there is anything else that we can do to make this a success, you can reach out to me at 709-212-1066, Chris Patey, LSD Chairperson, feel free to do so.

Chris Patey, Chairperson

St. Anthony Bight LSD

Memorandum of Understanding (MOU)

Between

Great Northern Trail Association Inc.

and the Communities:

**Cook's Harbour, Goose Cove, Great Brehat, Hay Cove, L'Anse aux Meadows, Noddy Bay,
Quirpon, Raleigh, Ship Cove, St. Anthony, St. Anthony Bight, St. Carols,
St. Lunaire Griquet & Gunners Cove, and Straitsview,**

and the Organizations:

Grenfell Historical Society, and St. Anthony Basin Resources Inc.

Background

The Great Northern Trail Association Inc. (GNTA) is a locally based, volunteer-driven, not-for-profit organization dedicated to the development, promotion, and maintenance of a sustainable trail network across the Great Northern Peninsula. With the vision of creating a premier hiking destination, GNTA has successfully implemented sustainable trail-building practices and collaborated with local communities to highlight the region's natural beauty and cultural heritage.

Key accomplishments include the completion of the Cartreau Point Trail, a scenic 9-km coastal trail, and the ongoing development of the Iceberg Trail in collaboration with St. Anthony Basin Resources Inc. (SABRI), a 60-km route linking coastal landmarks. GNTA's efforts align with the Government of Newfoundland and Labrador's Great Coastal Trail initiative, as well as national conservation goals, such as Canada's "30 by 30" plan to protect 30% of lands and waters by 2030.

This MOU establishes a collaborative framework between GNTA and the surrounding communities—Cook's Harbour, Goose Cove, Great Brehat, Hay Cove, L'Anse aux Meadows, Noddy Bay, Quirpon, Raleigh, Ship Cove, St. Anthony, St. Anthony Bight, St. Carols, St. Lunaire Griquet & Gunners Cove, and Straitsview, and organizations Grenfell Historical Society, and St. Anthony Basin Resources Inc.—to advance the development and enhancement of the Great Northern Trail Network while maintaining sustainable practices and respecting existing outdoor uses. The communities and organizations involved in this MOU represent the diverse cultural and natural heritage of the Great Northern Peninsula, with rich histories and local knowledge that contribute to the success of the trail network.

Purpose

The purpose of this MOU is to formalize collaboration between GNTA and regional partners, including local communities and organizations, to:

1. Integrate all existing hiking trails under the Great Northern Trail Network and GNTA Brand.
2. Promote the Great Northern Trail Network as a premier destination for outdoor enthusiasts and tourists.
3. Develop, maintain, and upgrade trails to ensure high-quality, sustainable, and safe user experiences.
4. Promote environmental sustainability through trail development aligned with national and local conservation goals.
5. Preserve the region's existing outdoor activities important to communities, such as hunting, fishing, and berry-picking, without hindering existing ATV and snowmobile routes.
6. Foster economic and community growth by supporting tourism, local businesses, and recreation.
7. To foster community well-being by encouraging outdoor activities that promote health, wellness, and physical fitness while maintaining a sustainable and accessible trail network.

Objectives

Sustainable Trail Development:

- GNTA will lead trail construction, upgrades, and signage, adhering to its Sustainable Trail Building Manual, and will collaborate with regional partners as indicated.
- Communities and organizations will provide feedback and, where feasible and agreed upon, contribute resources, labor, permissions, or financial support to assist trail projects.
- Communities and organizations may assist with funding through grants, in-kind contributions, or other mechanisms, as mutually agreed upon. GNTA may lead efforts to secure external funding for major projects, involving regional partners as indicated.
- Trails will be designed to minimize environmental impact and protect biodiversity.

Tourism and Economic Development:

- The trail network will connect communities, guiding visitors to local attractions, accommodations, and businesses, thereby increasing tourism revenue and supporting local economies without imposing financial obligations on any party.
- GNTA will provide branding, signage, a website, brochures, and other promotional materials to unify the network under the GNTA banner.
- Communities and organizations will be recognized in GNTA's promotional materials, including signage, websites, and social media, to highlight their contributions to the trail network.

Community Collaboration and Engagement:

- Regular updates will be shared between GNTA and community representatives to discuss progress and address challenges.
- GNTA will host events, such as group hikes and trail races, to encourage community participation and attract visitors.

Maintenance & Restoration Work

- Maintenance and restoration work will be carried out collaboratively by GNTA and regional partners as needed and as soon as reasonably possible, based on the availability of personnel and financial resources. The allocation of resources (funds, labor, or materials) for these activities will be mutually agreed upon and is not a financial obligation for any party unless otherwise specified.
- This work includes:
 - Addressing reasonable wear and tear,
 - Repairing catastrophic storm damage,
 - Responding to damage caused by vandalism, and
 - Providing ongoing enhancement and restoration of the trail network.
- Upon completion of the Iceberg Trail, GNTA will take full responsibility for its management and maintenance. Until then, SABRI will remain involved in supporting its development as part of the ongoing collaboration.

Ownership and Branding

- Each party shall retain ownership of any trail it already owns. This MOU does not transfer ownership of any trails or associated land, nor does it impose any financial obligations on the parties involved for the ownership or upkeep of these trails.
- GNTA is supported by the parties for the above-mentioned branding, promotion, and sustainable management of the trail network.
- All Trails will be included into the Great Northern Trail Network and unified under the GNTA brand.
- GNTA will provide promotional materials such as signage, brochures, and a website to ensure consistent and professional branding across the network. Communities and organizations will be recognized for their contributions in GNTA's promotional materials.
- Upon completion of the Iceberg Trail, management will be transferred from SABRI to GNTA, which will take full responsibility for the trails, including branding, promotion, and maintenance.

Expertise and Contracted Services:

- GNTA, as the recognized expert in sustainable trail development within the region, may provide consulting and project management services for new trail initiatives or related projects. These services will be provided on a fee-for-service basis and only in cases where partners or external stakeholders specifically request such services.
- No financial obligation is imposed on partners unless they choose to engage GNTA for specialized expertise on a particular project.

Insurance and Liability

- GNTA will work with communities as necessary to ensure appropriate liability coverage for trail use.
- GNTA will be solely responsible for liability coverage for trails entirely constructed by GNTA.
- Each party will be responsible for its own actions and the actions of its members, employees, or agents. Neither party will be held liable for the actions of the other.
- This MOU does not impose any financial obligations on the partners.
- This MOU is not intended to be legally binding or to create legally enforceable right between the Parties.

Conflict Resolution

- In the event of a disagreement between GNTA and parties, both parties agree to engage in good-faith discussions to resolve the issue. If necessary, a neutral third party may be consulted for mediation.

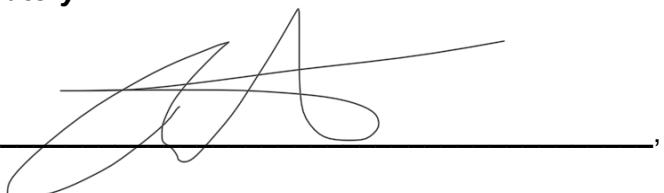
Monitoring and Accountability

- GNTA will prepare an annual report detailing completed trail projects, maintenance activities. This report will be shared with all stakeholders to ensure transparency and accountability.
- Representatives selected from the communities will monitor trails in their areas and provide feedback as needed to GNTA regarding any required maintenance or safety concerns. GNTA will prioritize and address these concerns in a timely manner within financial and personnel constraints.

Effective Date and Duration

- This MOU becomes effective upon signing and remains valid until terminated by mutual agreement unless otherwise specified or with 90 days' written notice from either party.. It is intended to guide collaboration and does not create legally binding obligations.
- This MOU may be reviewed annually or as needed to reflect evolving needs and ensure its continued effectiveness

Commitment to Collaboration


This MOU reflects the shared commitment to fostering outdoor recreation, promoting health and wellness, and advancing sustainable trail development to benefit the region's communities and visitors alike. By working together, we can ensure a vibrant, accessible, and environmentally responsible trail network for all to enjoy.

Signatories to the Memorandum of Understanding

(Community/Organization, Authorized Signatory

Date)

For **Great Northern Trail Association, Inc.**,

Samantha Cul

For Great Brehat Local Service District

(Community/Organization)

May 15, 2025

(Date)

Great Brehat Local Service District

P.O Box 456

St. Anthony, NL

A0K 4S0

To the Great Northern Trail Association Inc.:

On behalf of the Great Brehat Local Service District, we would like to support you in your trail development, branding, and signage in our area.

We fully support the Square Bay Trail development and give permission for parking at the turn around on southern main road, and support for the Little Brehat to Granchain Island Trail development with parking at the northern end of Main road.

We would be pleased to see our trails developed and look forward to seeing what you have planned, and to further benefit the tourists and locals with new and improved hiking trails.

We look forward to working with you.

Samantha Cull

Secretary

TOWN OF GOOSE COVE EAST
P. O. Box 8, Goose Cove, NL A0K 4S0 Phone (709) 454-8393 Fax (709) 454-8393

April 8th, 2025

To Whom It May Concern:

Re: Great Northern Trail Association Inc.

The Town Council of Goose Cove East fully supports the trail development and branding, also gives permission to sustainably reconstruct Pumley Cove Trail and Back Cove Trail accessing the new Goose Cape Trail.

We also give them permission to utilize the parking at either end of Pumley Cove Trail and either end of Back Cove Trail and Day Use Park.

I trust this is satisfactory.

Regards,

TOWN OF GOOSE COVE EAST

Patricia Reardon

Town Clerk

Memorandum of Understanding (MOU)

Between

Great Northern Trail Association Inc.

and the Communities:

Cook's Harbour, Goose Cove, Great Brehat, Hay Cove, L'Anse aux Meadows, Noddy Bay, Quirpon, Raleigh, Ship Cove, St. Anthony, St. Anthony Bight, St. Carols, St. Lunaire Griquet & Gunners Cove, and Straitsview.

and the Organizations:

Grenfell Historical Society, and St. Anthony Basin Resources Inc.

Background

The Great Northern Trail Association Inc. (GNTA) is a locally based, volunteer-driven, not-for-profit organization dedicated to the development, promotion, and maintenance of a sustainable trail network across the Great Northern Peninsula. With the vision of creating a premier hiking destination, GNTA has successfully implemented sustainable trail-building practices and collaborated with local communities to highlight the region's natural beauty and cultural heritage.

Key accomplishments include the completion of the Cartreau Point Trail, a scenic 9-km coastal trail, and the ongoing development of the Iceberg Trail in collaboration with St. Anthony Basin Resources Inc. (SABRI), a 60-km route linking coastal landmarks. GNTA's efforts align with the Government of Newfoundland and Labrador's Great Coastal Trail initiative, as well as national conservation goals, such as Canada's "30 by 30" plan to protect 30% of lands and waters by 2030.

This MOU establishes a collaborative framework between GNTA and the surrounding communities—Cook's Harbour, Goose Cove, Great Brehat, Hay Cove, L'Anse aux Meadows, Noddy Bay, Quirpon, Raleigh, Ship Cove, St. Anthony, St. Anthony Bight, St. Carols, St. Lunaire Griquet & Gunners Cove, and Straitsview, and organizations Grenfell Historical Society, and St. Anthony Basin Resources Inc.—to advance the development and enhancement of the Great Northern Trail Network while maintaining sustainable practices and respecting existing outdoor uses. The communities and organizations involved in this MOU represent the diverse cultural and natural heritage of the Great Northern Peninsula, with rich histories and local knowledge that contribute to the success of the trail network.

Purpose

The purpose of this MOU is to formalize collaboration between GNTA and regional partners, including local communities and organizations, to:

1. Integrate all existing hiking trails under the Great Northern Trail Network and GNTA Brand.
2. Promote the Great Northern Trail Network as a premier destination for outdoor enthusiasts and tourists.
3. Develop, maintain, and upgrade trails to ensure high-quality, sustainable, and safe user experiences.
4. Promote environmental sustainability through trail development aligned with national and local conservation goals.
5. Preserve the region's existing outdoor activities important to communities, such as hunting, fishing, and berry-picking, without hindering existing ATV and snowmobile routes.
6. Foster economic and community growth by supporting tourism, local businesses, and recreation.
7. To foster community well-being by encouraging outdoor activities that promote health, wellness, and physical fitness while maintaining a sustainable and accessible trail network.

Objectives

Sustainable Trail Development:

- GNTA will lead trail construction, upgrades, and signage, adhering to its Sustainable Trail Building Manual, and will collaborate with regional partners as indicated.
- Communities and organizations will provide feedback and, where feasible and agreed upon, contribute resources, labor, permissions, or financial support to assist trail projects.
- Communities and organizations may assist with funding through grants, in-kind contributions, or other mechanisms, as mutually agreed upon. GNTA may lead efforts to secure external funding for major projects, involving regional partners as indicated.
- Trails will be designed to minimize environmental impact and protect biodiversity.

Tourism and Economic Development:

- The trail network will connect communities, guiding visitors to local attractions, accommodations, and businesses, thereby increasing tourism revenue and supporting local economies without imposing financial obligations on any party.
- GNTA will provide branding, signage, a website, brochures, and other promotional materials to unify the network under the GNTA banner.
- Communities and organizations will be recognized in GNTA's promotional materials, including signage, websites, and social media, to highlight their contributions to the trail network.

Community Collaboration and Engagement:

- Regular updates will be shared between GNTA and community representatives to discuss progress and address challenges.
- GNTA will host events, such as group hikes and trail races, to encourage community participation and attract visitors.

Maintenance & Restoration Work

- Maintenance and restoration work will be carried out collaboratively by GNTA and regional partners as needed and as soon as reasonably possible, based on the availability of personnel and financial resources. The allocation of resources (funds, labor, or materials) for these activities will be mutually agreed upon and is not a financial obligation for any party unless otherwise specified.
- This work includes:
 - Addressing reasonable wear and tear,
 - Repairing catastrophic storm damage,
 - Responding to damage caused by vandalism, and
 - Providing ongoing enhancement and restoration of the trail network.
- Upon completion of the Iceberg Trail, GNTA will take full responsibility for its management and maintenance. Until then, SABRI will remain involved in supporting its development as part of the ongoing collaboration.

Ownership and Branding

- Each party shall retain ownership of any trail it already owns. This MOU does not transfer ownership of any trails or associated land, nor does it impose any financial obligations on the parties involved for the ownership or upkeep of these trails.
- GNTA is supported by the parties for the above-mentioned branding, promotion, and sustainable management of the trail network.
- All Trails will be included into the Great Northern Trail Network and unified under the GNTA brand.
- GNTA will provide promotional materials such as signage, brochures, and a website to ensure consistent and professional branding across the network. Communities and organizations will be recognized for their contributions in GNTA's promotional materials.
- Upon completion of the Iceberg Trail, management will be transferred from SABRI to GNTA, which will take full responsibility for the trails, including branding, promotion, and maintenance.

Expertise and Contracted Services:

- GNTA, as the recognized expert in sustainable trail development within the region, may provide consulting and project management services for new trail initiatives or related projects. These services will be provided on a fee-for-service basis and only in cases where partners or external stakeholders specifically request such services.
- No financial obligation is imposed on partners unless they choose to engage GNTA for specialized expertise on a particular project.

Insurance and Liability

- GNTA will work with communities as necessary to ensure appropriate liability coverage for trail use.
- GNTA will be solely responsible for liability coverage for trails entirely constructed by GNTA.
- Each party will be responsible for its own actions and the actions of its members, employees, or agents. Neither party will be held liable for the actions of the other.
- This MOU does not impose any financial obligations on the partners.
- This MOU is not intended to be legally binding or to create legally enforceable right between the Parties.

Conflict Resolution

- In the event of a disagreement between GNTA and parties, both parties agree to engage in good-faith discussions to resolve the issue. If necessary, a neutral third party may be consulted for mediation.

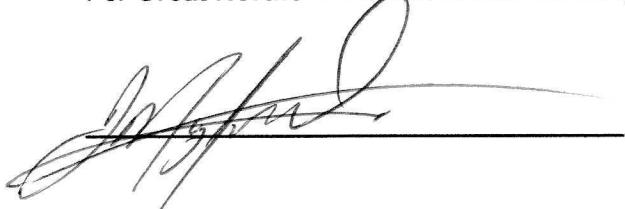
Monitoring and Accountability

- GNTA will prepare an annual report detailing completed trail projects, maintenance activities. This report will be shared with all stakeholders to ensure transparency and accountability.
- Representatives selected from the communities will monitor trails in their areas and provide feedback as needed to GNTA regarding any required maintenance or safety concerns. GNTA will prioritize and address these concerns in a timely manner within financial and personnel constraints.

Effective Date and Duration

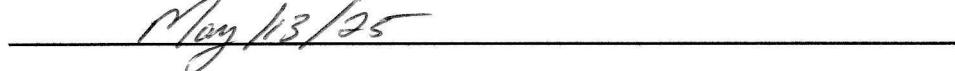
- This MOU becomes effective upon signing and remains valid until terminated by mutual agreement unless otherwise specified or with 90 days' written notice from either party.. It is intended to guide collaboration and does not create legally binding obligations.
- This MOU may be reviewed annually or as needed to reflect evolving needs and ensure its continued effectiveness

Commitment to Collaboration


This MOU reflects the shared commitment to fostering outdoor recreation, promoting health and wellness, and advancing sustainable trail development to benefit the region's communities and visitors alike. By working together, we can ensure a vibrant, accessible, and environmentally responsible trail network for all to enjoy.

Signatories to the Memorandum of Understanding

(Community/Organization, Authorized Signatory


Date)

For Great Northern Trail Association, Inc.,

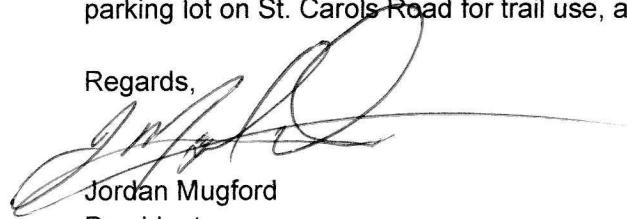
For St. Paul's Recreation Committee

(Community/Organization)

(Date)

May 13/25

Good morning,


I am writing on behalf of the St. Carol's Recreation Committee and for the Community of St. Carols.

First of all, let me start off by saying that we are elated to hear about future plans to develop a walking trail to connect our tiny communities. These trails are proven to be a draw to the area which paves the way for future economic development. They provide tourists and locals alike the opportunity to capture our rugged coastline beauty.

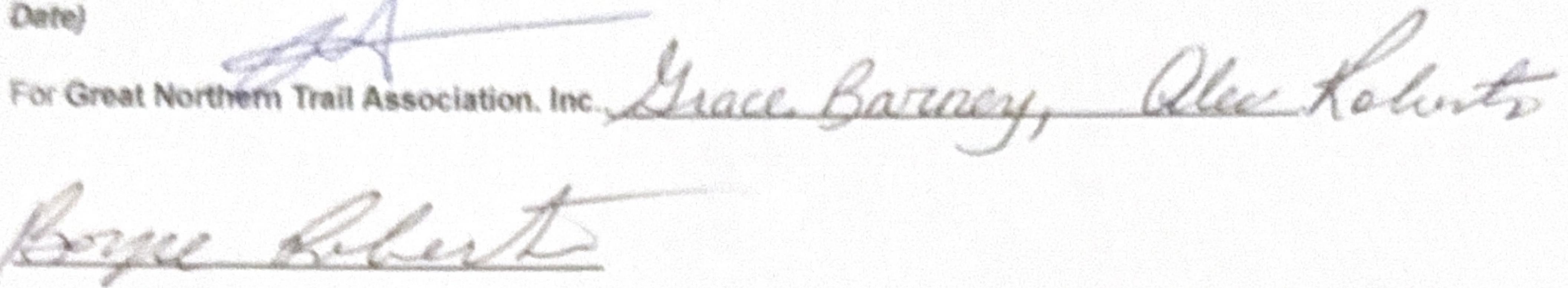
We welcome all GNTA branding and signage along both current and future trails and we will offer any and all support to see this vision come to fruition.

We give GNTA permission to upgrade John Patey's Trail, use its parking area, and build a new hiking trail connecting to it. Additionally, We give permission to use the cemetery parking lot on St. Carols Road for trail use, and to develop a new trail nearby.

Regards,

Jordan Mugford

President


St. Carol's Recreation Committee.

Signatories to the Memorandum of Understanding

(Community/Organization, Authorized Signatory

(Date)

For Great Northern Trail Association, Inc.

Grace Barney, Alice Kolwitz
Roger Robert

For

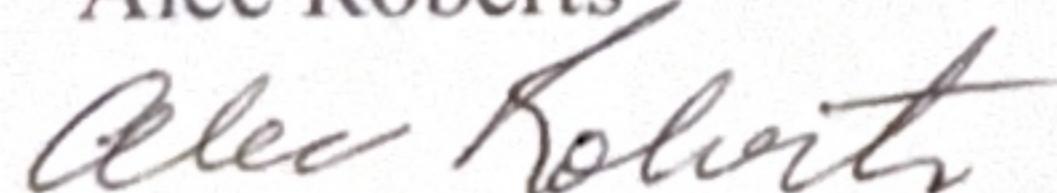
QUIRPO

(Community/Organization)

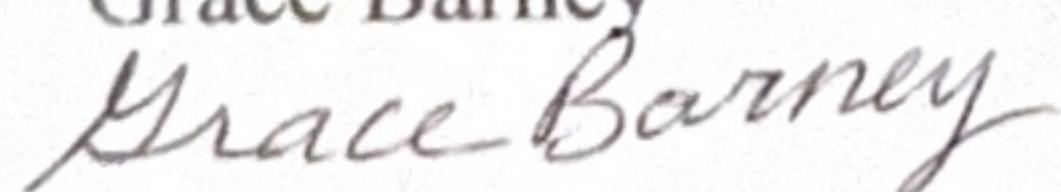
(Date)

May 13th 2025

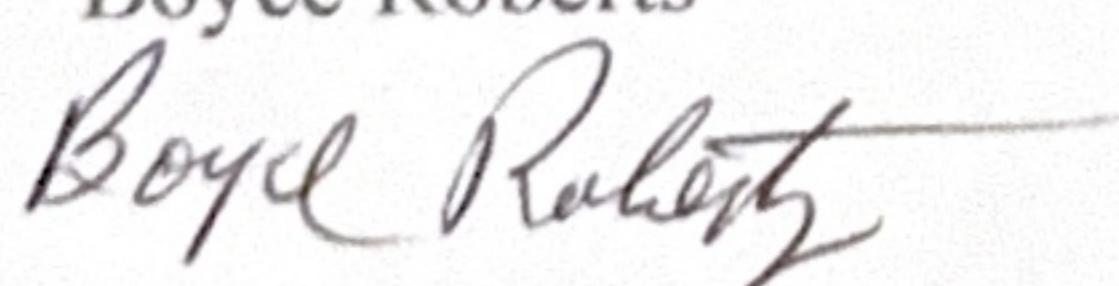
May 12th, 2025


To Whom It May Concern,

As lifetime residents of Quirpon, we have seen significant changes of our little town throughout recent history. A once thriving fishing community with fish processing plants, merchant shops, post offices and hope for the future has now become a quaint, picturesque fishing village with approximately 77 residents (somedays) having to travel to neighboring communities seeing the same fate, for all amenities.


Having an organization such as the Great Northern Trail Association (GNTA) wanting to highlight and revitalize our little piece of paradise brings comfort and pride knowing the younger generations wanting to see a future here as well as highlight our region for tourism. As residents and business owners, we fully support any and all advancement and addition to the GTNA within Quirpon, more specifically the revitalization and improvement of the Quirpon Tickle Lookout Trail as well as the inclusion of parking on the south end of the tickle road. Whether rehabilitating the old overgrown trails or additions of new ones, advancement in any regard is seen as investment in our community that we encourage.

Sincerely,


Alec Roberts

Grace Barney

Boyce Roberts

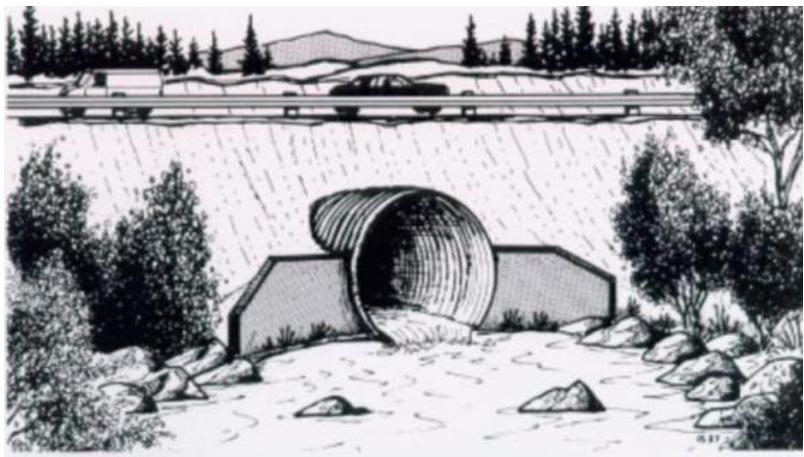
May 12th, 2025

To Whom It May Concern,

As lifetime residents of Quirpon, we have seen significant changes of our little town throughout recent history. A once thriving fishing community with fish processing plants, merchant shops, post offices and hope for the future has now become a quaint, picturesque fishing village with approximately 77 residents (somedays) having to travel to neighboring communities seeing the same fate, for all amenities.

Having an organization such as the Great Northern Trail Association (GNTA) wanting to highlight and revitalize our little piece of paradise brings comfort and pride knowing the younger generations wanting to see a future here as well as highlight our region for tourism. As residents and business owners, we fully support any and all advancement and addition to the GTNA within Quirpon, more specifically the revitalization and improvement of the Quirpon Tickle Lookout Trail as well as the inclusion of parking on the south end of the tickle road. Whether rehabilitating the old overgrown trails or additions of new ones, advancement in any regard is seen as investment in our community that we encourage.

Sincerely,


Alec Roberts

Grace Barney

Boyce Roberts

Chapter 5: Environmental Guidelines for Culverts

**Water Resources Management Division
Water Rights, Investigations, and
Modelling Section
November 29, 2018**

Government of Newfoundland and Labrador
Department of Environment and Climate Change
Water Resources Management Division
St. John's, NL, Canada
A1B 4J6

Chapter 5
Environmental Guidelines For
CULVERTS

Water Resources Management Division
Water Rights, Investigations, and Modelling Section

November 29, 2018

5.0 CULVERTS

Table of Contents

	Page
List of Tables.....	iii
List of Figures	iii
5.1 General	1
5.2 Culvert Location and Shape	3
5.2.1 Select a Stable Location	4
5.2.2 Select a Site With Uniform Channel Gradient.....	4
5.2.3 Location With Regard to Ice	4
5.2.4 Culvert Shape	4
5.3 Culvert Capacity	6
5.3.1 Provide Adequate Capacity to Prevent Surcharge.....	6
5.3.2 Allowance for Limited Gravel Deposition	8
5.3.3 Maintain Natural Stream Channel Capacity	10
5.3.4 Debris Control Structures and Culvert Capacity Should Address Maintenance Requirements	10
5.3.5 Anticipate Reduced Capacity	10
5.4 Flow Velocities in Culverts	11
5.4.1 Choose Design Velocities to Suit Existing Flow Conditions	11
5.4.2 Results of High Velocity	11
5.4.3 Choose Correct Gradient.....	12
5.5 Culvert Installation and Construction Practices	12
5.5.1 Installation to Manufacturer's Specifications.....	13
5.5.2 Operation of Heavy Equipment	13
5.5.3 Work During Times of Low Flow	14
5.5.4 Avoid In-Stream Excavation, Work in the Dry	14
5.5.5 Control of Stream Flow for Culvert Placement.....	14

5.0 CULVERTS

5.5.6	Culvert Gradient to Follow Stream Gradient.....	14
5.5.7	Multiple Culvert Installations.....	14
5.5.8	Place Culvert at Correct Elevation.....	15
5.5.9	Quality of Bedding and Backfill Material for Culverts	15
5.5.10	Procedure for Backfilling Culverts	16
5.5.11	Removal of Shipping Supports	16
5.6	Culvert Inlet and Outlet Structures.....	16
5.6.1	Headwalls Required	17
5.6.2	Use of Armour Rock	17
5.6.3	Use of Slope-Tapered Inlets.....	18
5.6.4	Use of Steel End Sections	18
5.6.5	Use of Concrete	18
5.6.6	Trash Racks Should be Sloped.....	18
5.6.7	Use of Spill Aprons for Scour Protection	19
5.7	Inspection and Maintenance	19
5.7.1	Inspect Culverts Regularly	19
5.7.2	Inspect Culverts During and After Major Floods	19
5.7.3	Establish a Culvert Maintenance Program.....	19
5.7.4	Mark Culvert Inlets and Outlets for Identification	19
5.7.5	Protect Inlets and Outlets	19
5.7.6	Replace Damaged Culverts	20
5.7.7	Maintenance Access.....	20

5.0 CULVERTS

List of Tables

	Page
5.1 Transport velocity for various sizes of streambed materials.....	12

List of Figures

5.1 A Corrugated Steel Culvert Mitred to the Face of a Wall (Top), and a Small Plastic Culvert with a Masonry Headwall (Bottom)	2
5.2 Common Shapes for Corrugated Steel Culverts	5
5.3 Corrugated Steel Arch Culvert	5
5.4 California Balanced Design Method	7
5.5 Countersunk Culvert.....	9
5.6 Conversion of Normal Round Culvert to Countersink Size	10
5.7 Poorly Installed Culverts	13
5.8 Two Culverts with a Shared Outlet Location.....	15
5.9 Pipe Arch Culvert with Masonry Headwall and Wingwalls.....	17

5.0 CULVERTS

5.1 General

Culverts are often used to provide access across drainage ditches, intermittent streams and small watercourses. Culverts can provide an efficient and inexpensive means of crossing provided they are properly designed and properly installed at suitable locations. Often culverts are also necessary to provide drainage where roads or other structures would interfere with the otherwise normal flow of surface runoff. Temporary or permanent culvert stream crossings are preferred to fording of small watercourses where extensive fording may give rise to channel destabilization.

On some streams it is environmentally desirable to construct bridges instead of culvert crossings because bridge installations can avoid extensive alteration of the flow regime which is inherent with most culvert installations. Bridges are also preferred to culverts in crossing all streams which support fish populations. Culvert installations usually result in more substantial alteration or loss of sections of the natural channel bed and can cause a partial or total barrier to fish migration. Installation of culverts in major watercourses and rivers, instead of bridges, is not considered a good environmental practice.

Many types of culverts are available from suppliers, the most popular being corrugated steel pipe. Reinforced concrete culverts, and plastic pipe culverts, are usually available in round sections only. Examples of corrugated steel and plastic culverts can be seen in **Figure 5.1**. Corrugated steel culverts are available in a large variety of cross sectional shapes and sizes to suit varying stream conditions or requirements, the most popular shape being round or arched.

All culvert installations of significant size, including multiple or gang culvert installation, should undergo thorough hydraulic and hydrologic analysis. Factors such as channel gradient, flow velocity, channel cross section, channel roughness, discharge patterns, peak water levels, quantity of flow, and ice formation must be considered.

5.0 CULVERTS

Figure 5.1 A Corrugated Steel Culvert Mitred to the Face of a Wall (Top), and a Small Plastic Culvert with a Masonry Headwall (Bottom)

5.0 CULVERTS

The completed culvert installation should safely accommodate reasonably predictable levels of flow and adequately resist the erosive action of moving water without creating any adverse environmental impact at the crossing or in upstream or downstream areas. Flow quantity may be predicted through a variety of methods including the rational method, unit hydrograph, SCS Method, or Regional Flood Frequency Analysis. In addition to utilizing any of these methods a relevant amount of data must be collected on the stream and its watershed such as:

- historical streamflows
- velocity distribution in stream
- high water marks
- ice shove marks
- precipitation data
- potential river scour data
- ice formation and ice jamming areas
- rating of erosion hazard
- surface drainage patterns
- floodplains
- surface area of rivers, lakes, bays, wetlands

While it is not always necessary or possible to determine all of the source data listed above it is generally advisable to have sufficient data to check expected flood flow by at least two independent methods.

The following sections of this chapter provide helpful information for culvert design and installation to ensure that the width and depth of flow expected in the stream under natural conditions is not significantly altered by the installation of culverts. Construction procedures should follow these guidelines with the primary objective being to prevent environmental damage such as pollution and siltation. These guidelines are intended to provide explanatory information and guiding principles but do not provide a complete code for design because certain design criteria such as load bearing capacity should be derived from appropriate texts. Engineering advice should be sought by lay people who wish to purchase and install their own culverts.

5.2 Culvert Location and Shape

The location of culverts is perhaps the most important consideration in installing an environmentally satisfactory culvert crossing. While the location of the road will probably be the primary consideration, it is important to realize that minor changes in road alignment may be necessary to avoid problem areas as far as culvert installations are concerned.

5.0 CULVERTS

5.2.1 Select a Stable Location

Avoid locations where there are abrupt or short radius bends in the stream channel and areas where erosion, undercutting, or fine soils are evident. These areas are often subject to greater erosive force which could create problems for a culvert installation.

Heavy erosive action can lead to undercutting of the culvert and structural damage. In addition, these areas are often unstable and the channel may be shifting. If the stream bed is mobile it may eventually bypass the culvert, rendering the installation useless. Culvert crossings should be located on straight, stable channel segments with no evidence of heavy erosive action.

5.2.2 Select a Site With Uniform Channel Gradient

Select a culvert site where the channel gradient is uniform for a distance upstream and downstream in the channel. This will avoid areas where there may be sudden increases in water velocity immediately upstream or downstream of the installation. The gradient must be constant at the crossing itself. Culverts should never be installed with bends in them.

Steeper channel gradients result in higher flow velocity. This could mean that the installation would be subject to greater risk of erosion and washout caused by the momentum of water striking the culvert inlet area. Areas of low gradient should therefore be given preference.


5.2.3 Location With Regard to Ice

A culvert should not be located where large quantities of solid sheet ice are formed upstream. During spring runoff such ice may break loose and block the culvert. Outlet areas of small pools or ponds should therefore not be culverted.

5.2.4 Culvert Shape

The shape of a culvert should conform to the site conditions and to the flow regime at that location. While round culverts are the most popular, a variety of shapes are available (see **Figure 5.2**). Design options are limited by flow characteristics and highway alignment. Where elevation is restricted the designer may select a shape which is horizontally elongated to produce the same cross sectional area with less height.

5.0 CULVERTS

Figure 5.2 Common Shapes for Corrugated Steel Culverts

Although an open bottom arch is shown in **Figure 5.2**, arch "culverts" can be treated as bridges and are discussed in *Chapter 4, "Bridges"*. A photo of an arch culvert can be seen in **Figure 5.3**.

Figure 5.3 Corrugated Steel Arch Culvert

5.0 CULVERTS

Wider culverts result in lower flow velocity. At low flows wider culverts may have insufficient water depth to allow fish passage.

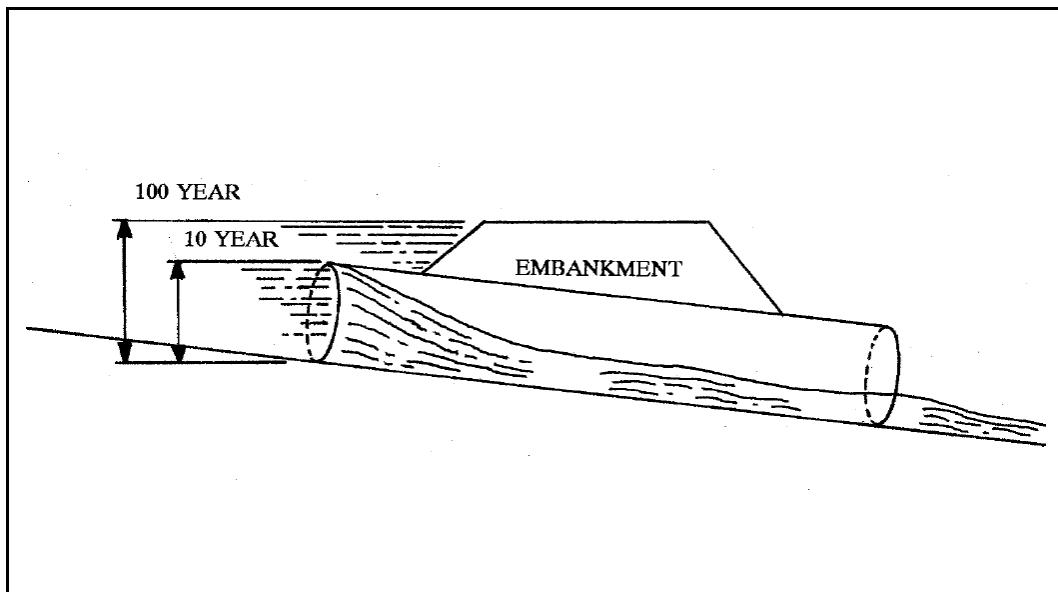
Generally, arch shapes are useful to reduce the elevation of fill, but they are more difficult to install. Elliptical shapes provide better low flow characteristics. Multiple barrels of the same size or different sizes may be easier to install and conform to the stream shape, but these installations are generally less efficient hydraulically when compared to larger single size pipes.

5.3 Culvert Capacity

All culvert installations should be designed to safely accommodate peak flow volumes estimated for that section of channel during the expected life of the culvert. This means that the size or capacity of a culvert should be commensurate with its expected serviceability. For instance a culvert installed under an infrequently used forest access road would not be expected to give the same degree of performance as a culvert installed under a major highway. Nevertheless all culverts must be installed in a manner which is acceptable from an environmental standpoint. When culvert capacity is exceeded by a very large volume of flow or the capacity is reduced by blockage, there is a danger of:

- overtopping, damage to the roadway and traffic interruption
- consequential threats to human safety
- damage to adjacent property or the environment
- unsafe outlet velocities
- injurious deposition of bed load

Excessive headwater depth can contribute to a "piping effect" through the backfill material surrounding culverts. This can undermine culverts and result in a major washout.


Surcharge conditions can cause flooding upstream of the culvert and/or scour and erosion at the culvert inlet.

5.3.1 Provide Adequate Capacity to Prevent Surcharge

Culverts should be designed with adequate capacity to carry maximum design flows without creating surcharge or backwater conditions. In this regard culverts should be designed to carry the design flow with a headwater depth not greater than the vertical dimension of the pipe. Large culverts (over 2.0 m) should have a freeboard.

5.0 CULVERTS

Small culverts under 2.0 m can use the California Balanced Design Method (see **Figure 5.4**), which specifies (1) a 10 year return flood can be carried without static head at the inlet, and (2) a 100 year return flood will be carried utilizing the full head available at the inlet.

Figure 5.4 California Balanced Design Method

Where overtopping can be tolerated (ie. if none of the previously mentioned consequences of inadequate capacity apply except overtopping itself), the 100 year return period can be reduced to:

Freeways	50 year
Arterials	50
Urban local and collector streets	25
Rural and forest areas	20
Driveways and farm lanes	10

Typically, in Newfoundland, stream widths are greater than the culvert opening. The flow may become constricted, causing critical conditions at the inlet, a case called inlet control. The discharge of the culvert is controlled by the entrance conditions, which are:

- headwater depth
- cross sectional area
- type of inlet edge

5.0 CULVERTS

The roughness, length, and outlet conditions of the culvert do not influence culvert performance. The entrance of the pipe acts as an orifice and is governed by the equation:

$$Q = C_d * A_o * (2gh)^{0.5}$$

where

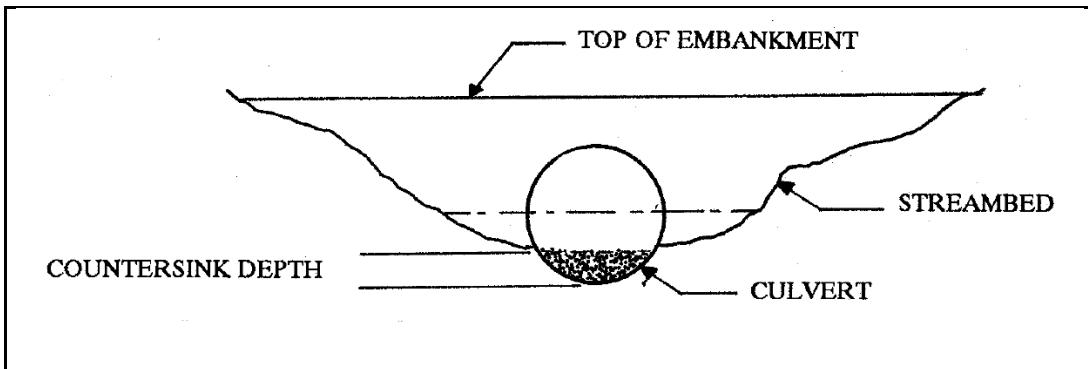
Q = flow

C_d = experimental coefficient

A_o = area of orifice

h = height from centre of orifice to headwater surface

g = gravity constant (9.81 m/s^2)


C_d has a wide range and is primarily an indicator of the roughness of the opening. The influence of the edge roughness of the culvert decreases as the culvert diameter increases.

It is important to remember that under inlet control, the slope of the culvert does not affect the flow capacity. However, at high slopes the flow velocity in the pipe will be increased and may result in undermining at the outlet, downstream bed scour and damage to control structures.

5.3.2 Allowance for Limited Gravel Deposition

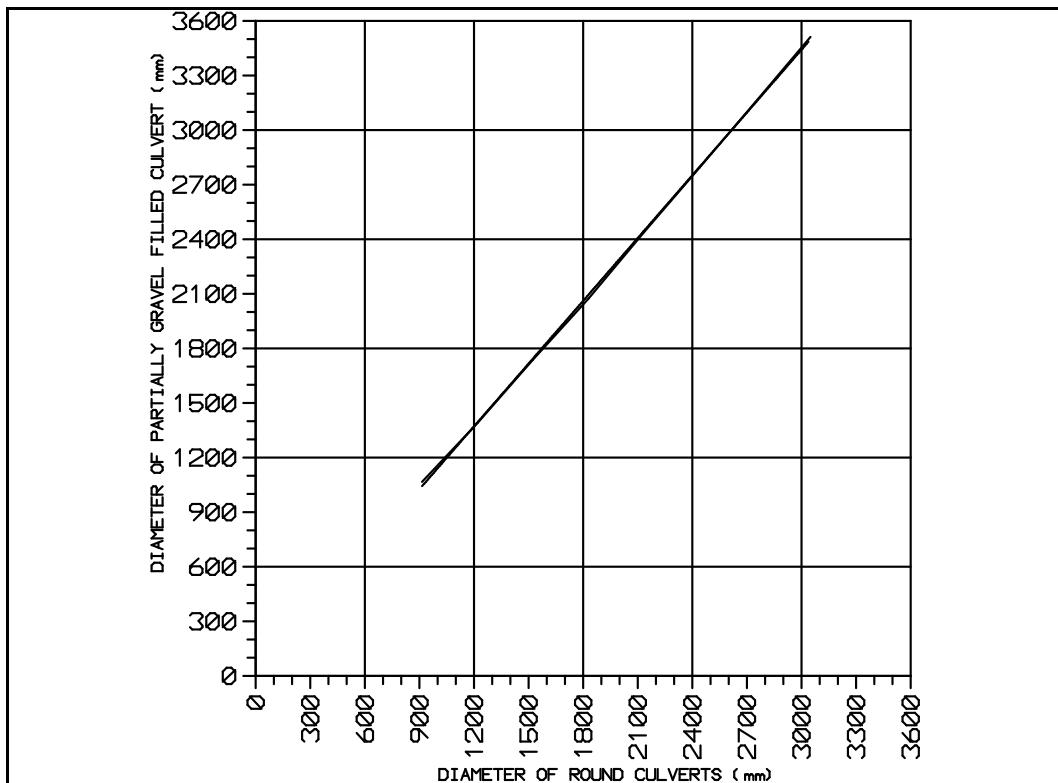
Culvert capacity should be designed to include provision for limited gravel deposition within the culvert if required for fish habitat reasons. (See **Figure 5.5**). This gravel should be sufficient to mimic a natural type of stream bed within the culvert, if the stream is a natural habitat for fish. Typically, the depth of allowable gravel deposition is 1/3 of the diameter for culverts under 0.75 m diameter, and 0.3 m for culverts over 0.75 m diameter. Because the gravel deposition reduces the cross sectional area of the pipe, the diameter of the culvert must be selected to produce sufficient flow capacity even with gravel deposition.

5.0 CULVERTS

Figure 5.5 Countersunk Culvert

Size selection is further complicated because the flow actually has three distinct hydraulic stages:

1.	Weir or open channel flow	$H = 0 \text{ to } D/2$
2.	Flow known experimentally	$H = D/2 \text{ to } D$
3.	Orifice flow	$H > D$


where

H = depth of water at inlet

D = diameter of culvert

Gravel deposition affects channel roughness, orifice roughness, and opening size. Consequently, in sizing a culvert allowance must be made for the reduced capacity resulting from this installation feature. Having used normal culvert design methods to estimate the appropriate size of culvert, **Figure 5.6** may be used to select the proper larger sized culvert to provide for countersunk installation.

5.0 CULVERTS

Figure 5.6 Conversion of Normal Round Culvert to Countersunk

5.3.3 Maintain Natural Stream Channel Capacity

Culvert installations should provide capacity equivalent to that of the existing natural channel. In this regard infilling of the channel or reduction of the natural cross sectional area of the channel due to the culvert placement and backfilling should be avoided. Pipe arches are a preferred shape over circular pipe in wide and flat bottomed streams.

5.3.4 Debris Control Structures and Culvert Capacity Should Address Maintenance Requirements

Many debris barriers or trash racks require cleaning after every storm. The expected frequency of debris removal should be considered in selecting the debris control structure. If a low standard of maintenance is anticipated, the designer should choose to pass the debris through the structure by ensuring adequate capacity.

5.3.5 Anticipate Reduced Capacity

Whereas the design capacity for a culvert installation may indicate an adequate installation purely from a hydrologic point of view, the possibility of reduced capacity must be anticipated. This is particularly important where

5.0 CULVERTS

there is ice, debris from logging or other forestry operations or debris from vandalism and littering. A culvert may require dramatic over sizing to allow passage of debris.

5.4 Flow Velocities in Culverts

5.4.1 Choose Design Velocities to Suit Existing Flow Conditions

The design flow velocity in culverts should be chosen to conform with existing natural upstream and downstream flow velocities. All factors which determine flow velocity through a culvert should be examined. These include:

- The slope of the culvert (grade on which it is placed),
- the roughness of the inside of the culvert,
- the design of the culvert inlet and outlet,
- the flow volume,
- the level or head of water at the inlet,
- backwater effects from downstream controls, and,
- the culvert type or more specifically the cross sectional shape which determines the perimeter in contact with the flowing water.

Low inlet and outlet flow velocities are preferred for all culvert installations. High velocity flow can result in undermining, erosion, and washouts of culverts and can also create an impasse to migrating fish. The flow velocity at times of normal flow conditions should not exceed 0.9 m/s except in instances where very steep natural channel grade and high velocity flow in the channel dictate a high flow velocity through the culvert.

5.4.2 Results of High Velocities

The downstream results of higher velocities may involve:

- bed scour
- bank erosion
- structural damage or overtopping of control structures
- undercutting of culvert.

If the velocity is dissipated quickly by the stream the main problems will be bed scour and undercutting in the immediate vicinity of the culvert. The flow velocity causes sufficient shear force to overcome the gravitational and frictional forces holding bed material in place. Transport velocities for streambed materials are given in **Table 5.1**.

5.0 CULVERTS

Table 5.1: Transport velocity for various sizes of streambed materials		
MATERIAL	PARTICLE SIZE mm	VELOCITY m/s
silt	0.005 - 0.05	0.15 - 0.30
sand	0.25 - 2.5	0.30 - 0.65
gravel	5.0 -15	0.80 - 1.20
pebble	25 - 75	1.40 - 2.40
cobble	100 - 200	2.70 - 3.90

5.4.3 Choose Correct Gradient

In most cases, culverts should be installed such that the gradeline coincides with the average streambed gradeline. Attempts to control flow velocity by changing the grade will have the following consequences:

- Culvert grade greater than stream; inlet will be elevated causing upstream ponding or outlet will be submerged and the barrel will act as a silt and gravel trap, eventually becoming blocked.
- Culvert grade less than stream; inlet will have a drop or outlet will be hanging.

Both cases will act as an obstruction for fish passage.

While some deviation from the stream grade may serve to decrease flow velocity in a culvert, calculations justifying this deviation must be performed. If the desired flow velocity cannot be achieved this way, then it is obvious that a bridge, rather than a culvert, is required.

5.5 Culvert Installation and Construction Practices

Improperly installed culverts are a waste of the owner's money, a threat to aquatic life, and may be a threat to the users of any structure built over or adjacent to them. A photograph of a poor culvert installation is shown in **Figure 5.7**.

5.0 CULVERTS

Figure 5.7 Poorly Installed Culverts

Figure 5.7 illustrates several obvious problems encountered with culvert installation. The pieces of corrugated metal lying in the water indicate that sections of culvert have failed under load and collapsed onto the stream bed. The culverts are projecting from the fill. There is no end protection to resist erosive action. It appears that the culverts have been placed haphazardly with very little concern for hydraulics, aesthetics, fish passage, or embankment protection. The embankment is poorly constructed and unstable.

Hopefully these guidelines will help installers avoid situations like the one pictured above.

5.5.1 Installation to Manufacturer's Specifications

The installation of all culverts should comply with the specifications prescribed by the manufacturer of that product, particularly in regard to pipe zone bedding material quality, degree of compaction, and minimum or maximum pipe cover for design loadings.

5.5.2 Operation of Heavy Equipment

The use of heavy equipment in waterbodies should be avoided. The operation of heavy equipment should be confined to dry stable areas.

5.0 CULVERTS

5.5.3 Work During Times of Low Flow

All work involving minor alterations to the stream channel to permit culvert placement should be carried out at a time of low flow conditions. It is prudent however to be prepared for increased flows by scheduling work according to the weather forecast and to have a contingency plan for unexpectedly large runoff from a sudden storm.

5.5.4 Avoid In-Stream Excavation, Work in the Dry

In-stream excavation can cause considerable siltation and pollution of watercourses. If excavation of bed material or other extensive in-stream work is necessary, to make a level bed for the culvert for example, all flow should be diverted or confined to a section to allow the work to be carried out in the dry.

5.5.5 Control of Stream Flow for Culvert Placement

Streamflow may be controlled in any of a number of ways in order to provide a dry working area. Four methods which may be used include the following:

1. A temporary diversion channel. (See *Chapter 7, "Diversions, New Channels, Major Alterations"*).
2. A temporary culvert(s).
3. Pumping. (See *Chapter 10, "General Construction Practices"*).
4. Confining flow to a channel section by use of cofferdams. (See *Chapter 10, "General Construction Practices"*).

5.5.6 Culvert Gradient to Follow Stream Gradient

The gradient of all culverts as far as possible should follow the stream channel gradient and should be placed in line with the direction of the main flow.

5.5.7 Multiple Culvert Installations

In multiple (gang) culvert installations, one culvert should be set at an elevation lower than the others to provide adequate flow depth and velocity for fish passage during low flow conditions. **Figure 5.8** shows an example of culverts from two separate crossings having outlets at the same point. The elevation is not as much of a factor here since it is not a true gang culvert.

5.0 CULVERTS

Figure 5.8 Two Culverts with a Shared Outlet Location

5.5.8 Place Culvert at Correct Elevation

Culverts should be placed at such an elevation that there is no ponding of water at the upstream inlet of the culvert and there is drop or hydraulic jump created at the outlet of the culvert. Similarly, outlets should not be submerged.

Large culverts may be countersunk into the channel bed. This also permits some gravel deposition in the culvert which creates a natural type of bed within the culvert.

5.5.9 Quality of Bedding and Backfill Material for Culverts

Suitable material of good quality should be used in backfilling culverts to ensure a good culvert installation. A compactable granular material "Granular Class B" quality or better is suitable for most installations. Cohesive soils or material containing large amounts of sand, fine silt or clay should not be used, because erosion of the material may result. Well graded granular material also provides better load carrying capability than poorly graded material or cohesive soils. Small culverts may be backfilled with the same material used to construct the road, provided that the material meets road construction standards. Larger culverts should be backfilled more carefully, using select material if necessary.

5.0 CULVERTS

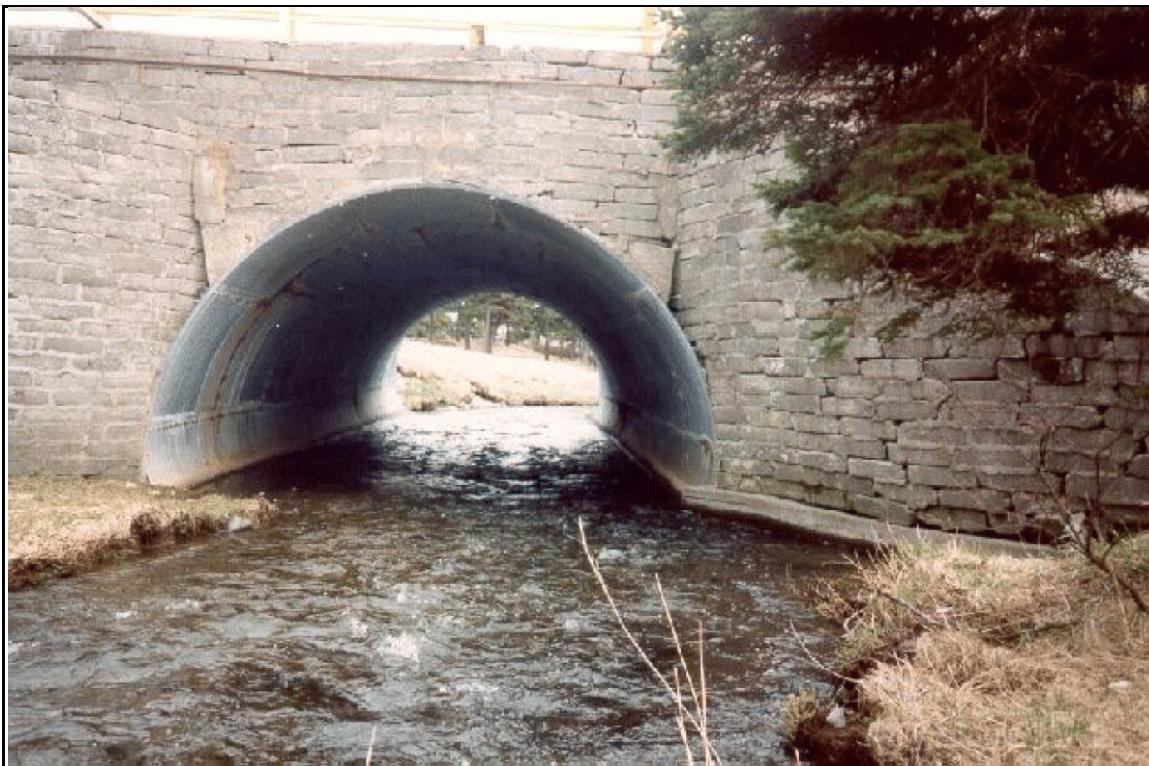
5.5.10 Procedure for Backfilling Culverts

Backfill material placed under the haunches of the pipe should be in intimate contact with the entire bottom surface of the structure. Pre-shaping the bedding material to match the culvert curvature may assist in this regard. Backfill material should be placed in layers not exceeding 300 mm in thickness and compacted with suitable hand operated compacting equipment. Backfilling should be done in a manner that will prevent any deformation or displacement of the culvert. Proper compaction is necessary to provide adequate load bearing capacity above the culvert, and is necessary to reduce the voids which can cause "piping effect". The soil compaction around the culvert should achieve 90% standard Proctor density or better. The major factors which influence soil compaction and which should be taken into consideration include the following:

- moisture content of the soil,
- nature of the soil, its gradation and physical properties,
- type and amount of compaction effort required.

Granular soil types are best compacted by applying a continuous vibratory action.

5.5.11 Removal of Shipping Supports


Large diameter culverts are often shipped with bracing to prevent deformation of the culvert during transport and installation. These braces should be removed upon completion of the work as they may contribute to blockages by debris or ice.

5.6 Culvert Inlet and Outlet Structures

Culvert end structures, pre-built or constructed in place are attached to the ends of culverts to reduce erosion, retain the fill, inhibit seepage, improve the aesthetics and hydraulic characteristics and make the ends structurally stable.

Headwalls may be made of concrete, lumber, steel sheet piling or rock either grouted or cemented or simply left plain. Headwalls are sometimes skewed relative to the culvert to fit the angle of crossing. Wingwalls may be used to aid in funnelling the approaching flow of water directly into the inlet and to prevent erosion on the stream banks adjacent to the culvert. **Figure 5.9** shows a masonry headwall and wingwalls.

5.0 CULVERTS

Figure 5.9 Pipe Arch Culvert with Masonry Headwall and Wingwalls

Larger culverts may be provided with specially shaped inlets. These inlets provide a smooth transition from a wide channel to a slightly narrower culvert barrel with the result that entrance losses are reduced and the culvert will effectively be able to carry a larger quantity of flow.

Special outlets or spill aprons are used to prevent erosion where high velocity flow re-enters the channel downstream. Trash Racks are optional end structures which serve to remove debris and also prevent unauthorized access.

5.6.1 Headwalls Required

Small sized culvert installations such as drainage culverts do not always require headwalls provided the fill is stable and is placed at a very mild slope. The necessity of providing headwalls generally increases with the culvert size.

5.6.2 Use of Armour Rock

Attractive, long term, economical and efficient protection of culvert inlet and outlet areas can be provided with rock when properly installed. Rock of sufficient size to form a permanent stable structure should be used. The foundation rocks should be set below the bed of the watercourse to prevent

5.0 CULVERTS

undermining. Wingwalls and headwalls of fitted rock should be leaned into the embankment at an inclination of at least 1/6 from the vertical axis to ensure stability. Joints can be pointed with concrete or mortar to provide a more uniform or water tight surface but the structure should not be dependent on the jointing material for structural stability. Where irregular or rubble rock is used to protect inlet and outlet areas, the rock should form a slope no steeper than one horizontal to one vertical and it should be well consolidated.

5.6.3 Use of Slope-Tapered Inlets

A tapered inlet slope provides less inlet head loss and thus can provide greater capacity and efficiency for culverts installations. Projecting culvert ends can be cut with a tapered slope to conform to the finished embankment slope and provides a neater and more aesthetically pleasing installation. Slope tapered inlets also provide less likelihood of serious blockage of the inlet by debris. However, special measures must be employed to prevent uplift of the projecting lip.

5.6.4 Use of Steel End Sections

A variety of steel end sections which are shop fabricated for assembly in the field, are available for attachment to corrugated steel pipe. These can provide better hydraulic inlet and outlet conditions and protection from erosion or scour of the road embankment and bed material, and can provide protection to the culvert ends as well.

5.6.5 Use of Concrete

Headwalls, wingwalls, spill aprons or other end structures constructed of cast in place concrete should be installed in accordance with the guidelines on use of concrete in *Chapter 10, "General Construction Practices"*.

5.6.6 Trash Racks Should be Sloped

Where a trash rack is used to catch debris and prevent it from entering a culvert, the rack should be installed with a low incline to prevent floating debris from being held against the rack by the flow (as with vertical trash racks) as this can cause serious flow constriction flooding, or washouts. An inclined rack allows debris to be pushed up to the top of the inlet structure where it will not seriously constrict flow and where it can be easily removed.

5.0 CULVERTS

5.6.7 Use of Spill Aprons for Scour Protection

An apron of fitted rock or rip-rap can be installed at the outlet of a culvert to provide protection to the stream bed and prevent scour or undermining. Such a structure can also provide a sufficient roughness factor to reduce the velocity at the outlet thus providing further protection from erosion or scour. This is preferred to concrete or steel aprons which do not significantly reduce outlet velocities and which often cause scour of the bed material at the apron lip.

5.7 Inspection and Maintenance

5.7.1 Inspect Culverts Regularly

Culvert installations should be inspected regularly so that immediate action can be taken to clear blockages caused by ice or debris and to identify any apparent problems, such as erosion, which may require remedial action.

5.7.2 Inspect Culverts During and After Major Floods

An inspection of culverts should be made during and after major floods to observe the culvert operation and record high water marks. Conditions which require corrective maintenance should be noted including debris accumulations, silting, erosion, piping, scour, and structural damage. Performance information that reflects a need for design or construction changes due to unexpected large flood peaks should be submitted to the regulatory authority or owner for further action.

5.7.3 Establish a Culvert Maintenance Program

Culvert failures can be both disastrous and expensive. A comprehensive program for maintaining culverts in good repair and operating condition will reduce the probability of failures and prove to be cost effective. The program should include periodic inspections with supplemental inspections following flood events.

5.7.4 Mark Culvert Inlets and Outlets for Identification

All culvert inlets and outlets should be clearly marked so as to be identified during snow clearing and road grading operations.

5.7.5 Protect Inlets and Outlets

Inlet and outlet areas of culvert installations must be adequately protected by placing rip-rap, or fitted stone, or concrete headwalls to prevent bank had channel erosion.

5.0 CULVERTS

5.7.6 Replace Damaged Culverts

Culverts which have been damaged by ice or debris, by improper installation or construction procedures, or are in a condition which could impair their proper functioning should be replaced immediately to prevent overtopping, erosion, or flooding.

5.7.7 Maintenance Access

Provisions for maintenance access are necessary especially where debris control structures are installed. A parking area for equipment such as a crane may be necessary in order to remove debris without disrupting traffic. Also such access should not disrupt the site rehabilitation efforts.

Parks Canada National Best Management Practices

Trail Maintenance and Modification

Parks Canada National Best Management Practices for Trail Maintenance and Modification

Approved by

Original signed by Nadine Crookes

Nadine Crookes, Director Natural Resource Conservation Branch

Original signed by Ed Jager

Ed Jager, Director Visitor Experience Branch

August 4, 2016

Date

Contents

Introduction.....	4
Scope of Application.....	4
Exceptions.....	5
Approved geographic area of application.....	6
Components of the environment that may be affected.....	6
Mitigation Measures	7
1. Common Activities	8
Work Site Conditions/Staging/Laydown	8
Equipment Operations	8
Construction Materials and Practices	9
Invasive Alien Species.....	10
Waste.....	10
Hazardous Material	11
Wildlife	11
Vegetation	12
Erosion and Sediment Control.....	13
Visitor Safety and Experience.....	14
Cultural Resources	15
2. Trail Modification and Re-routing.....	15
3. Bridge, Boardwalk and Culvert Maintenance.....	16
4. Decommissioning and Rehabilitation	17
Trails.....	17
Trail Structures and Fixtures (e.g., boardwalks, viewing platforms, stairs, railing, benches).....	18
5. Supplementary Mitigations	18
Appendix 1 - Proper Pruning Method.....	21

Introduction

The Best Management Practice (BMP) pathway is applied when there is a suite of routine, repetitive projects or activities, with well understood and predictable effects. This fulfils Park's Canada's obligations under the *Canadian Environmental Assessment Act 2012* as a manager of federal land (see the [Guide to the Parks Canada EIA Process](#)). The BMP maximizes efficiency through creation of a pre-approved impact assessment for the defined suite of projects, to which standard mitigation and environmental management measures can be applied.

National BMPs can be applied in the following ways:

- Direct application: Use as is as long as the proposed project falls within the scope of the BMP(s) and its application will ensure there are no significant residual adverse environmental effects.
- Application along with supplemental mitigations: *This will likely be the case when using a National BMP.* Slight modifications will likely be required to ensure all potential impacts are mitigated and to provide project-specific clarifications (e.g., critical timing windows, contact information, SAR considerations, which mitigations apply to the project and which ones do not apply).
- Application as part of a Basic Impact Analysis (BIA) or Detailed Impact Analysis (DIA): where one or more BMPs may not address all the potential adverse environmental effects of a proposed project, Field Units can apply the BMP(s) as part of a BIA or DIA.
- Develop a Field Unit specific BMP: use the National BMP as a resource to create a BMP to address site-specific needs (i.e., *rip off and duplicate*). In this case, the new BMP must be signed off and approved by the Field Unit Superintendent.

The impact assessment officer (IAO) will review a proposed project and advise the functional manager of the project if and how this BMP should be applied. The IAO's advice will be based on whether the project falls within the scope of the BMP, and whether application of the mitigation measures in the BMP will adequately address potential adverse effects of the project. The IAO will also be responsible for adding any required supplemental mitigations to ensure site specific considerations are addressed.

Project Managers are responsible to ensure all mitigation measures applicable to the project are added to the terms and conditions of any permits or contracts issued for the project.

The IAO must ensure the project, EIA pathway applied and determination are recorded in the Parks Canada National Impact Environmental Assessment [Tracking System](#).

Scope of Application

This BMP applies to the maintenance and modification of existing trails within national parks and national historic sites, including historic canals.

Parks Canada trails may require maintenance and modification to meet sustainable trail standards, correct poor design, ensure user safety and improve overall visitor experience. Trails also include a wide range of structures and fixtures that need to be maintained including benches, garbage bins, viewing platforms, stairs, and signage.

General activities addressed in this BMP include:

- trail tread maintenance (e.g., re-shaping tread, building up the tread, grading and outslope for drainage, removing obstacles, filling in potholes, covering roots and exposed rocks, broadcasting soil and area clean up)
- trail reroutes and extensions less than 500m long and located within 50m on either side of the existing trail tread (e.g., preparing trail base, excavation, grading, trail surfacing)
- trail widening within half a meter from either side of the existing trail tread (e.g., preparing trail base, excavation, grading, trail surfacing)
- vegetation management (e.g., clearing and grubbing, corridor clearing, trimming, re-vegetation)
- erosion control measures (e.g., slope stabilization, maintenance of crib or retaining walls, check dams and steps)
- drainage structure maintenance and installation (e.g., digging to create drainage dips/knick, rolling grade dips and/or installation of other trail drainage features, cleaning debris from existing drainage structures)
- routine repair and replacement of structures or fixtures (e.g., benches, garbage bins, barriers, handrails, trail signs, markers, pit privies)
- routine repair and replacement of rotted or damaged materials in Class B pedestrian bridges¹, boardwalks, stairways, culverts (Note: non-fish bearing waterbodies only)
- trail decommissioning and rehabilitation (e.g., blocking off and disguising the trail, restoration of damaged slopes, re-grading the tread, re-vegetation)
- operation of equipment (helicopters, hand machinery, vehicles such as ATVs, mini-excavators, mini-dozer, tracked dumping equipment)
- waste management related to construction activities

Exceptions

This BMP does NOT apply to the following:

- New trail construction projects, trail re-routes, or extensions greater than 500m in length and/or located more than 20m from either side of the existing trail tread (Note: further level of analysis is likely required for these projects but this BMP may be used as part of that analysis).
- Work below the High Water Mark² of a fish bearing waterbody.
- Realignment of a watercourse.

¹ Class B bridges are not suspension bridges, truss bridges nor viewing platforms or towers. They have a drop in elevation between the walking surface and the adjacent surface or streambed of 2.4 metres or less. They do not have a dangerous site condition such as: Fast flow during all or part of the year; Deep water; Hazardous streambed; The adjacent surface within 1.2m of the walking surface being of a slope of more than 1 in 2; or Any other condition deemed as being dangerous by the Parks Canada Professional Engineer having jurisdiction. Class B bridges have low risk of injury due to collapse or if a person should fall from the bridge. Source: *Design, Construction and Inspection of Vehicular and Pedestrian Bridges* (2008)

² High Water Mark is the usual or average level to which a body of water rises at its highest point and remains for a sufficient time so as to leave a mark on the land (Fisheries and Oceans, 2016). Upper Controlled Water Elevation (UCWE) is used as a definition of high-water mark in managed waterways.

- The use of explosives near a fish bearing waterbody.
- Installation of a new boardwalk or full replacement of an existing boardwalk in an environmentally sensitive area (e.g., moss, wet areas, shoreline).
- Bridges that are NOT Class B pedestrian bridges (as defined in the Parks Canada [Design, Construction and Inspection of Vehicular and Pedestrian Bridges](#)).
- Installation of new parking lot or washroom facilities.
- Paving of an existing parking lot or re-surfacing a trail with asphalt (refer to Parks Canada [National BMP for Roadway, Highway, Parkway and Related Infrastructure](#)).
- Projects located within Zone I (Special Preservation).
- Work which may adversely impact any potential or established Aboriginal and Treaty rights or traditional use.
- If the project has the potential to have residual adverse effects on an individual or a residence of a listed species at risk (endangered, threatened, or extirpated status) or any adverse effects on the critical habitat of a listed species at risk.

Should any of the above conditions apply, the project will require use of another applicable BMP or combination of BMPs to fulfill impact assessment requirements or consideration of another environmental impact analysis pathway i.e., Basic Impact Analysis (BIA) or Detailed Impact Analysis (DIA). Some or all of the mitigation measures in this BMP may be used to prepare a BIA or DIA.

NOTE: Consult with the relevant Field Unit or national Parks Canada specialists (e.g., environmental impact analysis, species at risk, cultural resources, indigenous consultation, wildfire risk reduction, and visitor experience) for guidance as required.

Approved geographic area of application

This BMP is intended for use in all Parks Canada administered protected heritage places.

Components of the environment that may be affected

Soil/Land Resources:

- Soil compaction and rutting
- Soil erosion, loss of topsoil and exposure of subsoils
- Soil contamination from waste (e.g., garbage, litter, sewage, fuel)
- Increase in anthropogenic footprint
- Trail-side trampling

Air/Noise Quality:

- Temporary decreased ambient air quality (e.g., dust, equipment emissions)
- Temporary increased levels of CO₂ and other pollutants
- Increased ambient noise levels

Water Quality:

- Surface and groundwater contamination from waste (e.g., garbage, litter, sewage, fuel)
- Sedimentation, causing increased turbidity
- Changes in temperature regime and natural drainage patterns

Vegetation:

- Damage to and/or removal of vegetation from trail route clearing; side-trampling during use; root exposure, resulting in physiological stress and, in the case of trees, susceptibility to windfall
- Introduction of invasive alien species, or expansion of existing populations
- Impacts on valued and sensitive vegetation features
- Habitat destruction and mortality from wildfire

Wildlife:

- Wildlife disturbance during construction and on-going use of the trail causing displacement/preferred habitat avoidance
- Wildlife habituation/atraction to artificial food sources from garbage or litter
- Damage to nests/dens/roosts and disruption of nesting/denning/roosting animals
- Loss of food sources and habitat
- Introduction of alien invasive species, or expansion of existing populations
- Habitat destruction and mortality from wildfire

Visitor Safety and Experience:

- Reduced quality of visitor experience due to noise and presence of construction equipment
- Increased visibility of human disturbance on the landscape and decreased aesthetic
- Reduced accessibility to portions of the site where work is taking place
- Hazard to visitors and staff due to conflict with trail use and trail construction and maintenance activities (e.g., heavy equipment and hand tool operation, helicopter use, tree removal)

Cultural Resources:

- Adverse effects on the heritage value or character-defining elements of a cultural resource or a heritage place, including:
 - Impacts to archaeological resources (known or potential) from displacement or destruction resulting in loss of heritage value
 - Adverse effects on cultural landscapes or landscape features of heritage value
 - Wildfire risk

Mitigation Measures

This BMP includes a broad range of mitigation measures and as such, the IAO must review the document carefully to determine which apply to the project. To use this document efficiently and reduce the overall size and scope of the mitigations to present to contractors and project managers, follow the recommendations below:

Step 1) Go to the Microsoft Word toolbar and select the View tab, then check the Navigation Pane box. This allows you to see all the headings and will allow for efficient editing. For example, if a whole section does not apply, simply right click on it in the Navigation Pane and choose delete.

Step 2) Section 1. Common Activities includes mitigation measures which should, in most part, apply to all trail maintenance and modification projects. Review this section and delete the mitigation measures that may not apply to the project.

Step 3) Review Sections 2 to 4; keep relevant sections and delete those that do not apply. Review relevant sections and delete mitigation measures that do not apply to the project.

Step 4) Add any supplementary mitigation measures to Section 5. Supplementary Mitigations. For example, reference to “designated Parks Canada staff” is made through this BMP; details on site and project specific contacts must be included in this section.

Step 5) Save the document as a pdf or print a paper copy and include with the EIA determination record.

1. Common Activities

Work Site Conditions/Staging/Laydown

1. All people working on the project must review the mitigation measures and any site specific considerations with designated Parks Canada staff³ before work begins. This may be done once seasonally for regular maintenance activities but projects such as trail re-routing or work in/near water, require individual start-up meetings.
2. Staging and parking areas for material and equipment must be identified, including duration of use, within an existing disturbed footprint (e.g., roadway, gravel surface, previously disturbed area with high resiliency).
3. Material drop sites (via foot, vehicle, helicopter or boat) must be approved by designated Parks Canada staff.
4. When transporting material via helicopter:
 - Choose a drop point that is open and easily accessible from the construction site and that will minimize travel to and from the construction site.
 - Plan multiple drop sites at strategic locations to avoid doubling back on the trail to distribute materials.
5. Cover construction material with weighted tarps when appropriate. Minimise damage to adjacent plant material and rehabilitate if necessary.
6. Use existing roadways, trails, disturbed areas or other areas as approved by designated Parks Canada staff for site access, travel within the site and construction activities (e.g., sawing wood).
7. Clearly mark work site and restricted areas with stakes, biodegradable flagging tape or other means; remove when project is completed.
8. Keep disturbance footprint as small as possible and limit vehicle access to essential vehicles only.

Equipment Operations

9. Equipment must be properly tuned, clean and free of contaminants, in good operating order, free of leaks (e.g., fuel, oil or grease), and fitted with standard air emission control devices and spark arrestors prior to arrival on site.

³ The following applies wherever “designated Parks Canada staff” is referenced in this BMP: for National Historic Sites and Parks: the Resource Conservation Manager/staff; for the Historic Waterways: the Waterway Environmental Assessment Officer; and for Jasper, Banff, Lake Louise, Yoho and Kootenay National Parks: the Integrated Land Use Policy and Planning Manager, unless otherwise specified.

10. During construction, any required cleaning of tools and equipment must be done greater than 30 meters from waterbodies to prevent the release of wash water that may contain deleterious substances.
11. Equipment operators must be fully trained and experienced.
12. Select equipment appropriate to the nature of work being conducted (e.g., avoid using large scale machinery when hand tools or smaller scale machinery could be used).
13. The crossing of any waterbody by construction equipment, or the use of such equipment within waterbodies must be approved by designated Parks Canada staff. If approved:
 - Consult with designated Parks Canada staff prior to project start-up, to determine single entry and exit points for any watercourse crossings.
 - Use small scale equipment when at all possible (e.g., mini excavator, ATV, Ditch Witch)
 - Use established/constructed fords when available.
 - Protect access points (e.g., swamp mats, pads).
14. When crossings are not required, operate machinery above the High Water Mark to minimise disturbance to the banks and waterbody.
15. Use low pressure or rubber tracked equipment or access matting where feasible to minimize soil compaction and ground disturbance.
16. Minimize idling of engines, contingent on operating instructions and temperature consideration.
17. Machinery (e.g., excavators, bobcats, chainsaws, generators) must be stored, maintained and refuelled on a flat surface, outside the drip line⁴ of trees and a minimum of 30 meters from waterbodies, as measured from the High Water Mark; increase the 30 meter buffer depending on level of risk and site specific conditions. Refueling must take place on a tarp or portable berm, or on compacted ground.
18. Consider using bio-degradable chain oil/vegetable oils in chain saws, especially when working within 30 meters of waterbodies.
19. If operating chain saws directly over or adjacent to waterbodies is unavoidable, use measures such as tarps to trap and prevent debris from entering the waterbody as much as possible.
20. Gas generators must be secured to prevent movement during operation and set up on an impermeable fuel mat with a berm or within a container that can contain 150% of the volume of fuel in the generator.

Construction Materials and Practices

21. Ideally, use timber that contributes to sustainable practice, such as recycled old growth or certified materials (e.g., Forest Stewardship Council certification). Trees of significant importance to the landscape must not be used unless otherwise directed by designated Parks Canada staff.
22. When building with unfinished wood, consider using species native to the area as directed by designated Parks Canada staff.
23. Use natural material and environmentally-friendly finishes (e.g., paints and stains) and products whenever possible.
24. When practical, consider pre-fabrication (e.g., bench or parts of structures) at an approved off-site location to minimize on-site construction impacts.
25. When practical, treatment of wood products (e.g., preservatives, paints, stains) should be done at an approved location prior to transport to the site. Field treatments should be applied over tarps or in another approved contained area and not be applied over or

⁴ The area defined by the outermost circumference of a tree canopy where water drips from and onto the ground.

within 30 meters of water. Treatments must be approved by designated Parks Canada staff.

26. Treated wood must be handled, installed, and disposed of according to the [Parks Canada Guide for the Use, Handling and Disposal of Pressure Treated Wood 2009](#) or contact the Parks Canada [Environmental Management team](#) for advice.
27. Minimise the number of saw cuts made to treated wood in the field. If unavoidable, cut treated wood away from waterbodies and over tarps to catch debris; cuttings, sawdust and other treated wood waste material must not enter waterbodies.
28. All cuttings, sawdust and other treated wood waste material must be collected and disposed of at an approved disposal facility.
29. Treated wood must not be burnt or left onsite to decay.
30. Concrete mixing activities must take place over tarps a minimum of 30 meters from waterbodies. Fresh, wet, uncured concrete and concrete dust must not come into contact with waterbodies; contain and remove any associated concrete waste to an approved disposal facility.

Invasive Alien Species

31. Footwear, clothing, equipment and machinery coming into contact with the terrestrial or aquatic environment must be free of invasive alien species individuals, seeds, propagules (i.e., any other material that may cause the spread of the species) and pathogens. In particular:
 - Equipment from outside the protected heritage place must be washed/steam cleaned prior to arrival.
 - Ensure that footwear, clothing and equipment are free of invasive alien species (e.g., seeds, propagules) when travelling between invaded and uninvaded terrestrial and aquatic sites within the protected heritage place.
32. All soil, gravel, untreated construction lumber, erosion and sediment control products (e.g., hay, straw, mulch), or other applicable materials from outside the protected heritage place must be from a certified weed-free source.
33. Ensure that organic material (e.g., topsoil, borrow and fill material, gravel) taken from the construction site is free of invasive alien species before using in other parts of the protected heritage place.
34. Minimise ground disturbance and vegetation removal, as practical and within project requirements.
35. Minimise bare soil exposure (e.g., cover stockpiled material with tarps, plant native species, cover with natural mulch/ground coverings).
36. Stabilize and re-vegetate disturbed areas as soon as possible with native plants, soil and seed mix approved by designated Parks Canada staff. If there is insufficient time remaining in the growing season, stabilize the site to prevent erosion and vegetate the following spring.
37. Monitor disturbed and re-vegetated areas for several growing seasons to ensure that native vegetation is growing successfully and invasive alien species spread is prevented.

Waste

38. All wildlife attractants must be secured (e.g., petroleum products, human food, recyclable drink containers and garbage) within wildlife-proof containers, a secure building or vehicle. Keep food waste separate from construction waste and remove daily; if daily removal is not possible, secure until it can be removed.
39. Notify designated Parks Canada staff immediately should wildlife gain access to the above mentioned attractants.

40. Contain and stabilize waste material (e.g., dredging spoils, construction waste and materials, vegetation) above the High Water Mark to prevent them from entering any waterbody.
41. All construction materials must be removed from the site on project completion (e.g., refuse material, waste petroleum, construction material).
42. Contain waste and transport to an approved waste landfill site outside the Parks Canada protected heritage place, unless otherwise directed; cover waste loads during transportation.

Hazardous Material

43. Prevent the release of hazardous substances into the environment, including but not limited to, petroleum products and their derivatives, antifreeze or solvents.
44. All on-site personnel must be briefed on reporting requirements for hazardous materials spills; spills must be reported immediately to designated Parks Canada staff.
45. All construction sites must be equipped with containers suitable for the secure, temporary storage of hazardous wastes, separated by type.
46. A spill contingency response kit including sorbent material and berms to contain 110% of the largest possible spill (i.e., fuel or other toxic liquids) related to the work must be available on site at all times. On-site personnel must be aware of its location and trained in its use. Any contaminants must be recovered at source and disposed according to applicable laws, policies and regulations.
47. Identify and handle all toxic/hazardous materials as required under the *Canadian Environmental Protection Act, Transportation of Dangerous Goods Act* and Workplace Hazardous Materials Information Service.
48. Petrochemical products, paints and chemicals must be stored a minimum of 30 meters away from waterbodies and secured overnight in a Parks Canada approved enclosed area under lock and key; increase the 30 meter buffer depending on level of risk and site specific conditions.
49. Any hazardous waste or contaminated material uncovered during excavation/construction, must be investigated, source identified, removed and disposed of outside the protected heritage place at an approved facility. Disposal documentation must be provided to designated Parks Canada staff.

Wildlife

50. On-site personnel must be made aware of and report any incidental sightings of species at risk immediately to designated Parks Canada staff.
51. Schedule activities to avoid critical wildlife life stages (breeding, nesting, denning, roosting, rearing, migration). Consult with designated Parks Canada staff to discuss localized wildlife concerns.
52. Follow [Reducing Risk to Migratory Birds](#) guidance from [Environment and Climate Change Canada](#), including avoiding vegetation clearing during site-specific migratory bird timing windows. Consult with designated Parks Canada staff for specific approaches to avoiding impacts on migratory birds (e.g., nest surveys, exclusion zones for located nests, area avoidance).
53. Should active nests, dens, roosts or calving areas be discovered, stop work and contact designated Parks Canada staff immediately for direction.
54. Conduct trail activities during daylight hours, avoiding critical foraging times (dusk and dawn).
55. Minimize the time excavations remain open and cover or fence when left unattended to reduce the potential for wildlife injury.

- 56. Never approach or harass wildlife (e.g., feeding, baiting, luring).
- 57. If wildlife is observed at or near the work site, allow the animal(s) the opportunity to leave the work area and move away from areas of potential conflict.
- 58. Designated Parks Canada staff must be alerted immediately to any potential wildlife conflict (e.g., aggressive behaviour, persistent intrusion), distress or mortality. In the case of aggressive behaviour or persistent intrusion, stop work and evacuate the area.
- 59. On site workers must receive any required wildlife awareness training, according to field unit policy.

Vegetation

General:

- 60. Apply Wildlife mitigations #51-53.
- 61. Carry cut branches and slash away from trail infrastructure and out of trail user view. Spread branches out with cut ends facing away from trail.
- 62. Burning is not permitted within the protected heritage place unless approved by Parks Canada.
- 63. Where re-vegetation is required, use weed-free salvaged topsoil, native plants and seed mix approved by designated Parks Canada staff.

Clearing and Grubbing:

- 64. Apply General mitigations (#60-63).
- 65. Protect trees and plant species of high ecological, heritage or cultural value; all clearing activities must be flagged and pre-approved by designated Parks Canada staff.
- 66. Retain a 30 meter vegetated buffer, from the High Water Mark of waterbodies and a 15 meter buffer from steep slopes. If clearing is required within the buffer zone, conduct minimal selective clearing by hand to ensure soil stability and prevent run off. In sloped areas, buffers should increase in width as the slope increases.
- 67. Clear minimum area necessary; trees should be removed only as necessary for project completion, visitor/trail crew safety or wildfire risk reduction.
- 68. When felling trees, precautions must be taken to minimise damage to surrounding vegetation.
- 69. The felling of trees with obvious wildlife use (e.g., snags with cavity nests, trees with stick nests) must be avoided wherever possible; if unavoidable, designated Parks Canada staff approval is required.
- 70. Cut stumps as close to ground as possible. If clearing is conducted during winter in snow cover, return to site after snow melt to flush cut stumps as required.
- 71. All cut wood is the property of Parks Canada; consult with designated Parks Canada staff to determine appropriate cutting methods, use and disposal of cut wood and other plant material.
- 72. If woody debris is chipped, spread thinly within the surrounding forest with space between the chips to ensure native vegetation can grow and re-establish; spreading too thick may result in growth suppression and fire hazard.
- 73. Where practical, clear trees in a phased approach provided timing windows for critical wildlife life stages can be respected. Ideally, trees should not be cut until construction reaches them, in case last-minute adjustments are necessary.
- 74. Salvage and replant small trees when appropriate or dispose as directed by designated Parks Canada staff.
- 75. When possible, conduct work when the ground is frozen or under a condition (such as snowfall) that limits ground compaction. If not possible, consider the use of rig mats or other appropriate measures to minimise impacts.

- 76. Protect roots of trees to drip line to prevent disturbance or damage. Avoid traffic, dumping or storage of materials over root zone.
- 77. All holes left in the tread width from clearing and grubbing shall be filled with native material and compacted to ensure a stable, even tread surface.
- 78. When log ends or stumps are freshly cut and exposed within the sight lines of the trail corridor, rub exposed area with soil to reduce the brightness of fresh saw cuts.

Vegetation Maintenance:

- 79. Apply General mitigations (#60-63).
- 80. Stay within the existing trail tread when conducting maintenance activities.
- 81. Remove trail obstructions that impede use and safety of the trail corridor.
- 82. Natural features (e.g., trees, shrubs, rocks) should be left undisturbed as close to the trail edge and its fixtures as possible unless otherwise directed by designated Parks Canada staff.
- 83. Employ pruning techniques to minimise risk of tearing the bark and harming the tree; ensure that only branch tissue is removed and stem or trunk tissue is left undamaged (refer to Appendix 1-*Proper Pruning Method*).
- 84. Exposed roots creating erosion control issues should be covered with an appropriate layer of approved soil or fill. Consult with designated Parks Canada staff when such coverage is not possible.

Riparian Vegetation Maintenance:

- 85. Apply General mitigations (#60-63).
- 86. Removal of riparian vegetation should be kept to a minimum and undertaken only when absolutely required. When practical, prune or top vegetation instead of grubbing/uprooting.
- 87. Combined maintenance activities (e.g., mowing, brushing, topping, slashing) will affect no more than one third of the total woody vegetation, such as trees and shrubs, within 30 meters of the High Water Mark in any given year.
- 88. Use existing trails, roads or cut lines wherever possible to avoid disturbance to the riparian vegetation and prevent soil compaction.
- 89. Ensure canopy vegetation immediately adjacent to waterbodies is maintained unless deemed a hazard.
- 90. When practical, alter riparian vegetation by hand. If machinery must be used, operate on land and minimize disturbance to the banks of the waterbody.
- 91. Restore banks to original condition should any damage occur.
- 92. When altering a tree on the bank of a waterbody, ensure the root structure and stability are maintained.
- 93. Organic material and debris must not be allowed to enter waterbodies.
- 94. Minimize removal of natural woody debris, rocks, sand or other materials from the banks of waterbodies and avoid any disturbance below the High Water Mark.

Erosion and Sediment Control

- 95. Apply Alien Invasive Species mitigations as appropriate.
- 96. Schedule operations to avoid wet, windy and rainy periods or very dry periods that may increase erosion and sedimentation.
- 97. In areas prone to erosion, install erosion and sediment control measures before starting work, especially within 30 meters of a waterbody.
- 98. Regularly inspect and maintain erosion and sediment control structures during all phases of the project and modify measures as necessary.

99. Select erosion and sediment control products that correspond with the nature and duration of the project.
100. Use erosion and sediment control products made of 100% biodegradable materials (e.g., jute, sisal or coir fiber) when possible. Ensure backing materials are also biodegradable.
101. Use of hay or straw in erosion and sediment control are potential wildlife attractants and may contain invasive species; use must be approved by designated Parks Canada staff.
102. Use sediment and erosion control products that reduce potential for wildlife entanglement⁵ when possible. These options include:
 - Net-less erosion control blankets made of excelsior or loose mulch and unreinforced silt fences.
 - Netting with a loose-weave wildlife safe design.
103. Limit duration of soil exposure; phase activities whenever possible and restore disturbed areas as soon as possible.
104. Avoid equipment operation on steep or unstable slopes and in areas prone to erosion such as sand dunes.
105. Manage water flowing onto the site as appropriate for the project:
 - Divert upland surface runoff away from exposed areas.
 - Filter water being pumped/diverted from the site; silt-laden water must not be pumped directly into a waterbody (e.g., pump/divert water to a vegetated area 30 meters from the waterbody, to a constructed settling basin or other filtration system).
 - Minimise slope length and gradient of disturbed areas. Backslopes must be sloped to a 45 degree angle or less or to best match existing side slopes.
 - Cover erodible soils with mulch, vegetation, or rip-rap.
 - Construct check dams or similar devices in constructed swales and ditches.
106. Consider removing and maintaining sod mats for improved re-vegetation success and erosion control; disturbed areas should be reclaimed with topsoil.
107. Cover spoil piles with biodegradable mats or tarps or plant them with native grass or shrubs approved by Parks Canada.
108. Topsoil separation is required; stockpile topsoil away from subsoils and spoil material and more than 15 meters away from waterbodies, drainage features and/or the top of steep slopes.
109. Store excavated soils on tarps to limit damage to underlying vegetation and cover with weighted tarps if left for an extended period of time.
110. Excess organic material will be distributed on the trail tread or other existing un-vegetated areas.
111. Immediately stabilize disturbed areas, shoreline or banks, preferably through re-vegetation, with native species approved by designated Parks Canada staff. If there is insufficient time remaining in the growing season, the site should be stabilized, (e.g., cover exposed areas with erosion control blankets to keep soil in place) and/or vegetated the following spring; maintain effective sediment and erosion control measures until re-vegetation of disturbed areas is achieved.
112. Maintain effective sediment and erosion control measures until re-vegetation of disturbed areas is achieved.
113. Remove temporary erosion and sediment control products, especially non-biodegradable materials, when they are no longer required.

Visitor Safety and Experience

114. If possible, schedule construction activities outside peak visitor season.

⁵ [Wildlife-Friendly Plastic-Free Netting in Erosion and Sediment Control Products](#)

- 115. The work site will be closed and marked while active construction, repair or maintenance is underway; consider temporary detours or reroutes as appropriate.
- 116. If closing the area is not possible, maintain a safe working distance between work activities and visitors; consider the use of lookouts to manage traffic through the construction/hazard area.
- 117. As much as possible, schedule noisy activities to minimise impacts to visitors, especially around townsites, campgrounds and other high visitor use areas.
- 118. Secure and clearly mark unattended safety hazards (e.g., excavations, unsecured decking on a bridge, debris piles) with fencing, warning signs, area closures or combination thereof.

Cultural Resources

- 119. Apply any mitigation measures that may have been previously identified by a Parks Canada archaeologist and/or other conservation specialist (e.g., cultural landscapes or landscape features of heritage value) for the immediate area of work.
- 120. Avoid known and potential archaeological sites.
- 121. Stockpiled material must not be permitted to damage or bury known cultural resources.
- 122. Apply any mitigation measures that may have been previously identified by a Parks Canada archaeologist and/or other conservation specialist for the immediate area of work.
- 123. If cultural resources are encountered, work must cease in the immediate area and designated Parks Canada staff notified.
- 124. Notify the site supervisor upon discovery of any archaeological resources. If features (i.e., structural remains and/or artifact concentrations) are encountered, leave in place, mark the location (e.g. with prominent flagging) and contact designated Parks Canada staff to take photographs and, if possible, depth measurements. The designated Parks Canada representative must provide the information immediately to the Terrestrial Archaeology section for an assessment of significance before work can resume.

2. Trail Modification and Re-routing

- 125. The final route of new trail segments will be determined on site and approved by designated Parks Canada staff⁶.
- 126. Biodegradable flagging tape must be collected and disposed of as required when the project is completed.
- 127. Stay within the flagged area during trail rerouting activities.
- 128. If excavating, sod mats or topsoil should be salvaged and stockpiled for future rehabilitation. Remaining soil should be broadcasted and raked to a soil thickness of 25 millimeters or less; ensure that vegetation is uncovered (e.g., on grassy slopes gently rake grass to stand back up).
- 129. Use a clinometer to confirm trail grades meet sustainable trail guidelines⁷.
- 130. Plan construction work so each section of the trail is completed as quickly as possible.
- 131. Carefully follow the designed layout for the trail and ensure natural drainage patterns are preserved.
- 132. Remove loose rocks from the trail tread and fill in any resulting holes.

⁶ When several options are being contemplated, consider discussing with an archaeologist to identify the best option in order to limit impacts and reduce the need for mitigation measures.

⁷ Refer to The Five Essential Elements of Sustainable Trails in *Trail Solutions: IMBA's Guide to Building Sweet Singletrack*, Pg 63-69 or contact the [Trails Team](#).

133. When constructing gravel trails, source gravel from local gravel pits to minimise hauling distance.
134. Reclaim materials whenever possible (e.g., use non-salvageable woody debris, excavated soil and surface material from new sections of trail on decommissioned sections of trail, use gravel from decommissioned sections on new sections of trail).
135. Shape loosened soils to match the local terrain.
136. Dispose of stockpiled vegetation as directed by designated Parks Canada staff.
137. When using borrow pits⁸:
 - Locate borrow pits well off the trail for safety and aesthetic considerations.
 - Do not locate borrow pits adjacent to tree root-balls.
 - Do not disturb soils from tipped up root-balls of fallen trees as they provide micro-habitats for small mammals and increase structure and plant diversity.
 - Scout for suitable soil deposits with a hand auger; look for above average grade deposits (mounds) with a minimal organic layer and vegetation cover.
 - Fewer, larger pits are preferable to multiple smaller pits.
 - Stockpile organic soils for later decommissioning of exhausted borrow pits.
 - Create only a single access trail to the borrow pit to minimize off trail impact. Flag access route if necessary (particularly on construction days).
 - Flag and record locations of active borrow pits for future use and eventual restoration.
 - Restore borrow pit when exhausted by grading area and covering with stockpiled organic soil. Any required replanting or reseeding must be done using native plants/seed mixture approved by Parks Canada

3. Bridge, Boardwalk and Culvert Maintenance

138. This BMP excludes work below the High Water Mark of fish bearing waterbodies. However, when working in close proximity to fish bearing waterbodies or in/near waterbodies that feed directly into fish bearing waterbodies, respect timing windows⁹ to protect fish, including their eggs, juveniles, spawning adults and/or the organisms upon which they feed.
139. Minimise the extent and duration of work within watercourses and bank areas.
140. Conduct in-stream work during periods of low flow or at low tide and not when flows are elevated due to local rain events or seasonal flooding.
141. Locate machinery crossings at straight sections of the watercourse, perpendicular to the bank, whenever possible. Avoid crossing on meander bends, braided streams, alluvial fans, or any other area that is inherently unstable and may result in the erosion or scouring of the bed.
142. Machinery fording of a flowing watercourse must be limited to a one-time event (i.e., over and back) and is to occur only if no alternative crossing method is available. In addition:
 - For fording equipment without a temporary crossing structure, use stream bank and bed protection methods (e.g., swamp mats, pads) if minor rutting is likely to occur.
 - Grading of the stream banks for the approaches should not occur.
143. Minimize the removal of natural woody debris, rocks, sand or other materials from the banks, the shoreline or the bed of waterbodies below the High Water Mark. If material is

⁸ An area from which material (soil, gravel) has been excavated for use at another location. Typically borrow pits are used when the trail tread surface needs to be raised and fill material is required.

⁹ <http://www.dfo-mpo.gc.ca/pnw-ppe/timing-periodes/index-eng.html>

removed, set it aside and return it to the original location once construction activities are completed.

144. Ensure contingencies are in place for occurrence of unexpected high flow conditions during the activity.

145. When rock material is used in or near a watercourse:

- Use clean, durable, non-ore-bearing, coarse granular aggregate material that is appropriately sized to resist displacement during peak flood events.
- Do not obtain rocks from below the High Water Mark of any watercourse.
- Do not use acid-generating rock or rock that fractures and breaks down easily.
- Install rock at a similar slope to maintain a uniform stream bank and natural stream alignment.
- Ensure rock does not constrict the natural channel width.

146. When removal and application of protective coatings is required implement the following:

- Remove paint or protective coatings in a manner that prevents paints, paint flakes, primers, solvents or other waste material from entering the watercourse.
- When feasible, use tarps to trap and prevent falling debris, spills or drips from entering the watercourse.
- Store, mix and transfer paints and solvents on land and not on the bridge to prevent spills into the watercourse.
- Contain paint flakes, abrasives and other waste materials and dispose at an approved location; waste materials must not be deposited into watercourses or riparian areas.

147. When removal of debris is required within culverts and around bridge piers and abutments, implement the following:

- Remove materials with hand tools when feasible. If machinery is required, operate from land and minimise damage to the bank of the watercourse.
- Limit removal of accumulated material (e.g., branches, stumps, woody materials, garbage) to the area within the culvert, immediately upstream of the culvert and to that which is necessary to retain culvert function and water flow. For bridges, only remove debris necessary to protect piers and abutments.
- Remove accumulated material and debris slowly to allow clean water to pass, to prevent downstream flooding and reduce amount of sediment-laden water going downstream.

148. Boardwalks should be high enough above the existing ground surface to allow grasses and native shrubs to re-vegetate around the structure and beneath deck boards.

149. Limit ground disturbance under boardwalks to the installation of staircase posts and sills.

150. Stabilize shoreline or banks disturbed by any activity associated with the project.

151. Restore bed and banks of the water body to the original contour and gradient; if the original gradient cannot be restored due to instability, a stable gradient that does not obstruct the natural water flow should be restored.

152. If replacement rock reinforcement/armouring is required to stabilize eroding or exposed areas, ensure rock is installed at a similar slope to maintain a uniform bank/shoreline and natural stream/shoreline alignment.

4. Decommissioning and Rehabilitation

Trails

153. Remove culverts and any existing trail surfacing material, including underlying geotextile fabric and dispose of as required by designated Parks Canada staff. Then, completely break up, or scarify, the compacted subsurface of the full length of the old trail tread to 10cm depth.

- 154. Cover and camouflage the old trail with topsoil, plants, grasses and re-plant small trees taken from re-route construction, where feasible.
- 155. Use stockpiled topsoil from the site to facilitate rehabilitation activities.
- 156. Re-grade visible decommissioned trail ends to surrounding slopes.
- 157. Reclaim eroded areas and ensure proper erosion control measures are identified and installed in the decommissioned section (e.g., check dams made of logs or rocks fixed across the trail to trap soil; for rocky trails with little soil covering, fill burlap bags with soil and rocks and use as check dams, consider transplanting a local shrub in the bag).
- 158. Reduce the visibility of the old trail so the transition areas are unrecognizable and the decommissioned trail is effectively closed (e.g., drag logs and branches over the tread and plant deadfall in the ground vertically to block the corridor at eye level; rake leaves and other organic matter over the tread to disguise the area.)
- 159. Ensure closed sections are clearly blocked off to users and create a natural, seamless transition to the new section; install signs if required.
- 160. Any replanting or reseeding must be done using native plants/seed mixture approved by Parks Canada.
- 161. Decommissioned trails will be monitored for visitor use, erosion, non-native plants and vegetation establishment; corrective actions will be implemented if necessary.

Trail Structures and Fixtures (e.g., boardwalks, viewing platforms, stairs, railing, benches)

- 162. Confine work to the existing footprint of the item to be decommissioned.
- 163. Rehabilitate the site to a natural condition, in consultation with designated Parks Canada staff.
- 164. Ensure any holes or depressions left from removal of structures or fixtures are filled.
- 165. Ensure wastes from demolition activities do not enter waterbodies (e.g., use tarps to capture debris). Any waste that does fall into a waterbody will be immediately retrieved, provided worker safety is not compromised, and if removal can be done without excessive disturbance of bottom sediment.
- 166. Consider re-use of structures, fixtures and materials (e.g., benches, building material) where practical and appropriate elsewhere in the protected heritage area. If not salvageable, materials must be disposed of outside the national protected place at an approved disposal facility unless otherwise directed by designated Parks Canada staff.

5. Supplementary Mitigations

In the application of National BMPs, supplementary mitigations will likely be required to ensure all potential impacts are mitigated. For example, a few site-specific mitigation measures may be needed to protect cultural resources or species at risk, to specify a critical timing window and to provide contact information. NOTE: if the number of supplementary mitigations is considerable in extent and nature, it should be determined whether a Field Unit specific BMP is better suited to address the impacts or another EIA pathway selected.

In this circumstance, the relevant BMP should be indicated in the EIA Requirement Checklist, with a note that application of the BMP will be supplemented through the addition of mitigation measures to address project or site-specific requirements. All relevant mitigations and project-specific clarifications should be included as terms and conditions in any permits and authorization documents (e.g., contracts) for the project.

Supplementary mitigation measures may be included here:

References

2030 Palette. [Riparian Buffers](#). Accessed March 2016.

California Coastal Commission. 2012. [Water Quality Fact Sheet Series: Wildlife-Friendly Plastic-Free Netting in Erosion and Sediment Control Products](#).

Environment and Climate Change Canada. [Reducing Risk to Migratory Birds](#). Accessed January 2016.

Fisheries and Oceans Canada. 1993. [Land Development Guidelines for the Protection of Aquatic Habitat](#).

Fisheries and Oceans Canada. 2007. *Saskatchewan Operational Statement: Temporary Stream Crossing*.

Fisheries and Oceans Canada. 2007. *Saskatchewan Operational Statement: Maintenance of Riparian Vegetation in Existing Rights-of-Way*.

Fisheries and Oceans Canada. 2007. *Saskatchewan Operational Statement: Bridge Maintenance*.

Fisheries and Oceans Canada. 2007. *Saskatchewan Operational Statement: Culvert Maintenance*.

Fisheries and Oceans Canada. [Self-Assessment Criteria](#). Accessed January 2016.

International Mountain Bicycling Association. *Designing and Building Sustainable Trails*. Accessed January 2016.

International Mountain Biking Association. 2004. *Trail Solutions: IMBA's Guide to Building Sweet Singletrack*.

Massachusetts Department of Conservation and Recreation. 2010. *Trails Guidelines and Best Management Practices Manual*.

Nova Scotia Environment. 2015. [Guide to Altering Watercourses](#).

Parks Canada. 2005. *Guidelines for the Management of Archaeological Resources*.

Parks Canada. 2008. *Design, Construction and Inspection of Vehicular and Pedestrian Bridges*.

Parks Canada. 2009. *Parks Canada Guidelines for the Use, Handling and Disposal of Treated Wood*.

Parks Canada. 2009. *Model Class Screening Report for Routine Projects in National Park Communities*.

Parks Canada. 2010. *Standards and Guidelines for the Conservation of Historic Places in Canada: A Federal, Provincial and Territorial Collaboration*. Second edition.

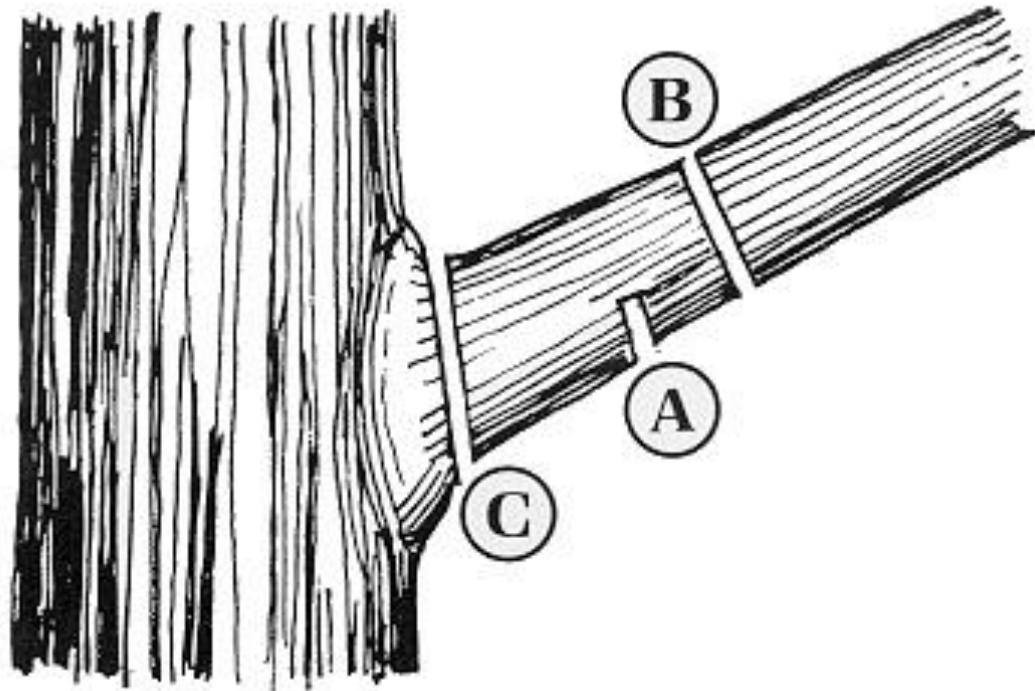
Parks Canada. 2013. *Cultural Resource Management Policy*.

Parks Canada. 2013. *Balsam Hollow Brook Trail Improvements*. Prince Edward Island National Park.

Parks Canada. 2013. *Cultural Resource Management Policy*.

Parks Canada. 2014. *Trail Surface Building/Upgrades and Primitive Campsites*. Fundy National Park.

Parks Canada 2014. *Basic Impact Analysis: Reeds and Rushes Trail Re-route*. Prince Edward Island National Park.


Parks Canada 2014. *Decommissioning Boardwalk Section of Reeds and Rushes Trail*. Prince Edward Island National Park.

Parks Canada 2014. *Basic Impact Analysis: Trail Re-route Port-la-Joye - Fort Amherst National Historic Site of Canada*. Prince Edward Island National Park.

Partners in Protection. 1999. *Firesmart, Protecting your Community from Wildfire*. ISBN 0-662-34064-7.

Last Update: June 27, 2016

Appendix 1 - Proper Pruning Method

To find the proper place to cut a branch, look for the branch collar, an often visible swelling that forms at the base of a branch where it is attached to its parent branch or to the tree's trunk. On the upper surface, there is usually a branch bark ridge that runs (more or less) parallel to the branch angle, along the stem of the tree. A proper pruning cut does not damage either the branch bark ridge or the branch collar.

A – The first cut is a shallow undercut to prevent bark tearing

B – The second cut completely removes the limb

C- The third cut removes the stub and is cut flush with the branch collar

Policy for Development in Wetlands

<https://www.gov.nl.ca/ecc/waterres/regulations/policies/wetlands/>

POLICY DIRECTIVE

Division:	Water Resources Management	P.D.	W.R. 97-2
Prepared By:	Anil Beersing	Issue Date:	June 2, 1997
Approved By:	Martin Goebel	Director	Re-Issue Date: Jan 17, 2001
Approved By:	Ken Dominie	ADM	Review Date:
Authorized By:	Paul L. Dean	DM	Superseded:
	Oliver Langdon	Minister	Cancelled:

Subject:

Development in Wetlands

1.0 INTRODUCTION

Wetlands, which include bogs, fens, marsh, swamps, and shallow water, collect and store runoff, moderate and attenuate downstream flood flows, reduce downstream flooding and erosion, clean and purify water, recharge groundwater zones, and provide unique habitat for plants and animals. The wetlands of Newfoundland and Labrador are increasingly being altered from their natural state to support alternative land uses such as agriculture, urbanization, industrial development, and recreation. Unplanned and imprudent development of wetlands, including drainage, infilling, and channelization, have detrimental effects on the wetlands' and downstream water quality and water quantity, and on terrestrial and aquatic habitat, life, flora and fauna. The potential consequences of impacts on water resources include structural damage to bridges and culverts from increased flood flows; river bed erosion

causing siltation; and detrimental impacts on fish resources, drinking water quality and recreational uses of water bodies.

The problem facing wetland management is that the ecological and socio-economic benefits of these ecosystems are usually not directly measurable and in many instances are not recognized until it is too late. The extensive nature of wetlands, peatlands in particular, in this province means that there is room for more developments to occur to meet social and economic needs, as long as hydrologic and environmental impacts are minimized.

2.0 OBJECTIVES

This policy will establish the criteria for issuing a permit under Section 48 of the *Water Resources Act*, SNL 2002 cW-4.011, for all development activities in and affecting wetlands. The objective of the policy is to permit developments in wetlands which do not adversely affect the water quantity, water quality, hydrologic characteristics or functions, and terrestrial and aquatic habitats of the wetlands.

3.0 LEGISLATION

Water Resources Act, SNL 2002 cW-4.01, (“the Act”) sections 30, 48 and 64

4.0 DEFINITIONS

Body of Water

(Statutory definition from the Act) “body of water” means a surface or subterranean source of fresh or salt water within the jurisdiction of the province, whether that source usually contains liquid or frozen water or not, and includes water above the bed of the sea that is within the jurisdiction of the province, a river, stream, brook, creek, watercourse, lake, pond, spring, lagoon, ravine, gully, canal, wetland and other flowing or standing water and the land occupied by that body of water

Wetland

(Statutory definition from the Act) “wetland” means land that has the water table at, near or above the land surface and includes bogs, fens, marshes, swamps and other shallow open water areas

Wetland development

“Wetland development” means the carrying out of an activity or operation which includes the construction of ditches, mechanical disturbance of the ground, alteration of normal water level fluctuations, infilling, drainage, dredging, channelization, and removal of vegetation cover and/or organic matter on a wetland for social or economic benefits, or the making of any change in the use or the intensity of use of any wetland which affects its hydrologic characteristics or functions.

5.0 POLICIES

5.1 Developments Not Permitted

5.5.1 Infilling, drainage, dredging, channelization, removal of vegetation cover or removal of soil or organic cover of wetlands which could aggravate flooding problems or have unmitigable adverse water quality or water quantity or hydrologic impacts will not be permitted.

5.5.2 Developments of wetlands which are located within the recharge zones of domestic, municipal or private groundwater wells will not be permitted.

5.5.3 Placing, depositing or discharging any raw sewage, refuse, municipal and industrial wastes, fuel or fuel containers, pesticides, herbicides or other chemicals or their containers, or any other material which impairs or has the potential to impair the water quality of wetlands will not be permitted.

5.2 Developments Requiring Written Permission

The following developments affecting wetlands will be permitted subject to the prior written permission of the Minister of Environment and Climate Change (the "Minister") in accordance with the Act:

5.2.1 Removal of the surface vegetation cover of wetlands for extraction of peat, or for preparing the area for agricultural or forestry activities.

5.2.2 Construction of ditches, tile fields and other types of flow conveyances to drain wetlands for extraction of peat, or for preparing the area for agricultural or forestry operations.

5.2.3 Removal of the top soil or organic cover of wetlands for use as horticultural or fuel peat, or for preparing the area for agricultural or forestry activities.

5.2.4 Infilling, dredging, or any other disturbance of wetlands for the construction of permanent or temporary roads, bridges, culverts, trails, power and telecommunication transmission lines, pipelines, etc., through wetlands which would necessitate only minor disturbances to the vegetation and organic cover, the flow drainage pattern of the area and ground slope.

5.2.5 Infilling, dredging or other disturbance of wetlands for the construction of residential, commercial, industrial and institutional facilities or extension and upgrading of existing buildings and facilities within wetland areas.

5.2.6 Development related to recreational activities including the setting up of camp grounds, permanent and semi-permanent facilities, etc., on wetland areas.

5.2.7 Construction of flow control structures to alter the normal water level fluctuations of wetlands for the purposes of enhancing the quality or quantity of fish and other wildlife habitat.

5.3 Implementation of Mitigative Measures

All uses and developments of wetlands resulting in potentially adverse changes to water quantity or water quality or hydrologic characteristics or functions of the wetlands will require the implementation of mitigative measures to be specified in the terms and conditions for the environmental approval.

5.4 Restoration Measures

The terms and conditions of the environmental approval will specify the restoration measures to be implemented upon cessation of activities or abandonment of facilities on wetland areas.

Front Cover

Inside Front Cover

**You can order a copy of this document using the order form on the
FHWA's Recreational Trails Program Web site at:
http://www.fhwa.dot.gov/environment/recreational_trails/trailpub.htm**

**Fill out the order form and either submit it electronically, fax it to
814-239-2156, or mail it to:**

Szanca Solutions/FHWA PDC
13710 Dunning Highway
Claysburg, PA 16625

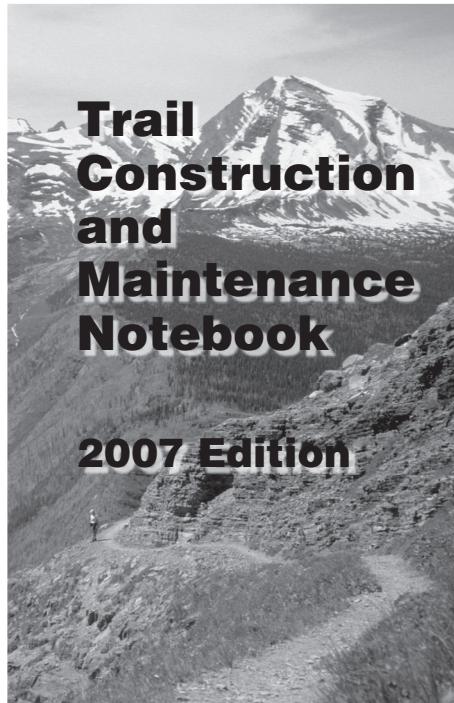
Produced by:

USDA Forest Service • Missoula Technology and Development Center
5785 Hwy. 10 West • Missoula, MT 59808-9361
Phone: 406-329-3978 • Fax: 406-329-3719
E-mail: wo_mttdc_pubs@fs.fed.us

**This document was produced in cooperation with the Recreational Trails Program of the Federal
Highway Administration, U.S. Department of Transportation.**

This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The contents of this report reflect the views of the contractor, who is responsible for the accuracy of the data presented herein. The contents do not necessarily reflect the official policy of the U.S. Department of Transportation.


This report does not constitute a standard, specification, or regulation. The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein only because they are considered essential to the object of this document.

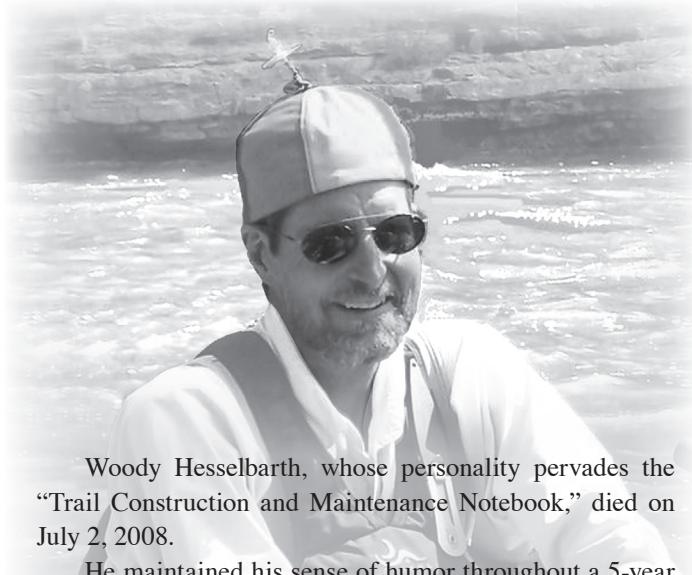
The Forest Service, U.S. Department of Agriculture, has developed this information for the guidance of its employees, its contractors, and its cooperating Federal and State agencies, and is not responsible for the interpretation or use of this information by anyone except its own employees. The use of trade, firm, or corporation names in this document is for the information and convenience of the reader, and does not constitute an endorsement by the Department of any product or service to the exclusion of others that may be suitable.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410, or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Title Page

i

Woody Hesselbarth
*Arapaho-Roosevelt National Forests and
Pawnee National Grassland
Rocky Mountain Region*

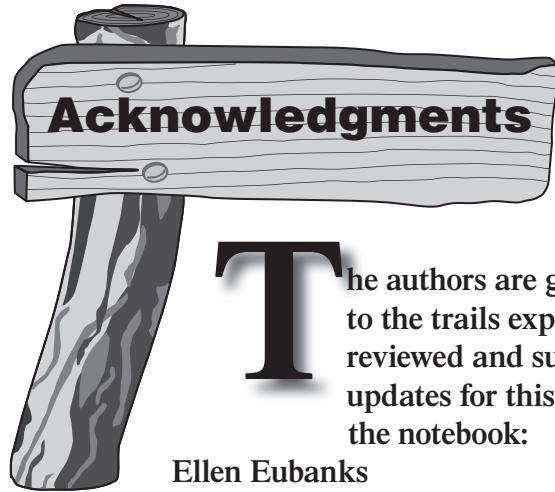

Brian Vachowski
Missoula Technology and Development Center

Mary Ann Davies
Project Leader

USDA Forest Service
Technology and Development Program
Missoula, MT

6E62A33—Update Trail Construction and
Maintenance Notebook

July 2007

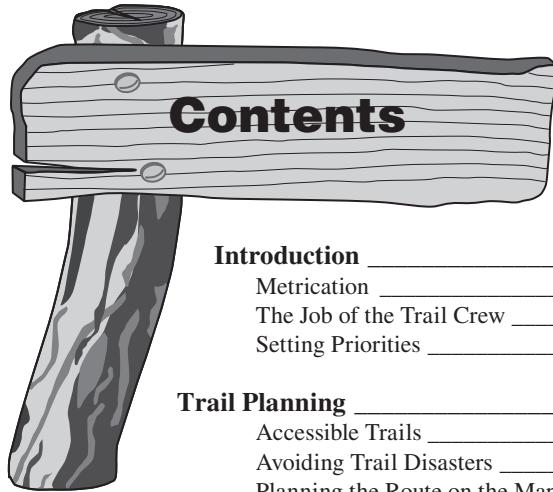

Woody Hesselbarth, whose personality pervades the "Trail Construction and Maintenance Notebook," died on July 2, 2008.

He maintained his sense of humor throughout a 5-year battle with cancer, sending periodic light-hearted updates on his condition to friends and coworkers.

Woody began working for the Forest Service in 1977 as a seasonal recreation technician on the White River National Forest. His first permanent position was as the trails specialist for the Nez Perce National Forest. During the last 12 years of his career he worked as a wildland fire dispatcher for the Cleveland and Arapaho-Roosevelt National Forests.

At various times, Woody was an avid alpine and Nordic skier, bicycle commuter, search and rescue volunteer (with his search dog Elisha), emergency medical technician, bicycle technician, National Ski Patrol volunteer, and instructor in the Incident Command System (used for emergency preparedness and response).

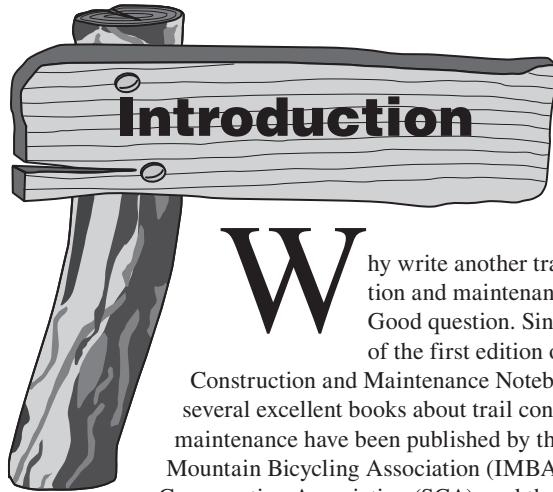
At all times, Woody was for fun, friends, good music, Hawaiian shirts, and silly hats.



The authors are grateful to the trails experts who reviewed and suggested updates for this revision of the notebook:

Ellen Eubanks
James Scott Groenier
International Mountain Bicycling
Association
Jonathan Kempff
David Michael
Jaime Schmidt

Thanks to Ted Cote, Bert Lindler, Jerry Taylor Wolf, and Deb Mucci for their help in the layout and editing of this revision.



Introduction	1
Metrication	3
The Job of the Trail Crew	4
Setting Priorities	5
Trail Planning	9
Accessible Trails	10
Avoiding Trail Disasters	11
Planning the Route on the Map	12
The 10-Percent Guideline	12
Trail Design	15
Scouting the Route in the Field	15
The Half Rule	17
Trail Specifications	18
Flagging	20
Light on the Land	23
Natural Forces at Work	25
Dirt, Water, and Gravity	25
Critter Effects	26
Surface Water Control	29
Sheet Flow	30
Grade Reversals	31
Draining Water Off Existing Trails	32
Knick	33
Rolling Grade Dips	34
Waterbars	36
Maintaining the Drain	39
Relocating Problem Sections of Trail	41

Trail Corridor	43
Clearing and Brushing	44
Removing Trees	48
Trail Foundation	51
Rolling Contour Trails	51
Full-Bench Construction	51
Partial-Bench Construction	52
Moving Dirt	54
Tread	57
Outsloping	59
Removing Roots and Stumps	59
Rock Removal	60
Tread Maintenance	62
Slough and Berms	63
Tread Creep	64
Trails in Wet Areas	69
Geosynthetics	70
Rock Underdrains	74
Turnpikes	76
Turnpikes Without Ditches	81
Puncheon	81
Subsurface Puncheon	87
Corduroy	88
Crossing Streams and Rivers	89
Shallow Stream Fords	90
Culverts	93
Bridges	96
Additional Trail Elements	101
Climbing Turns	103
Switchbacks	105
Retaining Walls	111
Steps	116
Pavers	123

Signs	125
Installing Signs	126
Installing Reassurance Markers	128
Maintaining Signs and Markers	132
Reclaiming Trails	135
Check Dams	138
Revegetation	140
Tools	141
Tools for Measuring	142
Tools for Sawing	143
Tools for Chopping	145
Tools for Grubbing	146
Tools for Digging and Tamping	149
Tools for Brushing	150
Tools for Pounding and Hammering	151
Tools for Lifting and Hauling	152
Tools for Peeling and Shaping	155
Tools for Sharpening	155
Mechanized Trail Building Equipment	157
Selected References	161

Why write another trail construction and maintenance guide? Good question. Since publication of the first edition of the "Trail Construction and Maintenance Notebook" in 1996, several excellent books about trail construction and maintenance have been published by the International Mountain Bicycling Association (IMBA), the Student Conservation Association (SCA), and the Appalachian Mountain Club, among others. At the same time, this notebook has remained popular, especially because of its pocket size and its wide availability through a partnership between the Forest Service, U.S. Department of Agriculture, and the Federal Highway Administration's Recreational Trails Program.

Based on helpful critiques of our earlier edition, we made numerous changes to reflect the latest thinking about constructing and maintaining trails. Much remains from the original edition.

True to our original intent, the Missoula Technology and Development Center (MTDC) has again pulled together basic trail construction and maintenance information, presented it in an easy-to-understand fashion, and oriented it to the needs of the trail worker. To keep the notebook's size manageable, we did not cover tasks such as detailed planning, environmental analysis, or inventory and monitoring. We've tried to make sure the notebook is consistent with current Forest Service policies and direction, but it is a practical guide for trail work, not a policy document. We worked to keep the notebook small and readable so it would end up in the packs of trail crew workers instead of under a table leg.

We have included many great references with more detailed information. Many of the Forest Service handbooks and manuals are now available to the general public on the Internet at: <http://www.fs.fed.us/im/directives/>.

Official direction for the USDA Forest Service can be found in:

- Trails Management Handbook (FSH 2309.18)
- Forest Service Standard Specifications for Construction and Maintenance of Trails (EM-7720-103)
- Sign and Poster Guidelines for the Forest Service (EM-7100-15).
- Forest Service Health and Safety Code Handbook (FSH 6709.11)
- Bridges and Structures (FSM 7722 and FSM 7736)

National trail information can be found at: <http://www.fs.fed.us/r3/measures/TR.htm>.

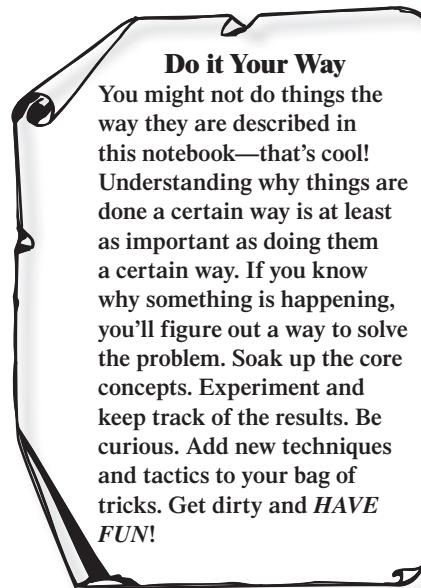
Of special interest are:

- Trail assessment and condition surveys (TRACS). TRACS is the nationally recommended system for conducting field inventory and condition surveys.

On the TRACS page you will find:

- Trail management objectives (TMOs). These objectives are used to establish the trail standard before the condition survey is conducted.
- TRACS data dictionary. This dictionary standardizes terminology for trail features.
- Trail Fundamentals.

On the Trail Fundamentals page you will find:


- Trail class matrix. This matrix provides definitions for the five national trail classes applicable to all National Forest System trails.

New references include “Trail Solutions: IMBA’s Guide to Building Sweet Singletrack” (International Mountain Bicycling Association 2004) and a companion DVD, “Building Mountain Bike Trails: Sustainable Singletrack” (Davies and Outka-Perkins 2006), which show how to plan, design, and build fun, sustainable trails. “Natural Surface Trails by Design” (Parker 2004) explores the art of trail design and

layout. Other new references include a comprehensive book on restoration, “Wilderness and Backcountry Site Restoration Guide” (Therrell and others 2006) as well as the “Accessibility Guidebook for Outdoor Recreation and Trails” (Zeller and others 2006).

There are many regional differences in trail building and maintenance techniques, tools, and terminology. The TRACS data dictionary is an attempt to standardize trail terminology. We hope you aren’t offended if your favorite technique has been left out or called a funny name.

Little about trail work is “new.” Our culture, though, has forgotten a lot about trails. When we attempt our first trail project, most of us know very little about water and dirt.

ing tapes around to measure things. A really handy way of keeping track of commonly used measures is to mark them on tool handles. For example, if the typical tread for your project is supposed to be 600 millimeters (24 inches), mark 600 millimeters on your tool handle.

Metrication

Metrication lives! Standard International (SI) units of measurement (metric) are used throughout the text, followed by roughly equivalent English measurements in parentheses. A handy conversion chart on the inside back cover can help the metrically challenged make conversions.

One other word on measurements. Most crews don’t haul measur-

The Job of the Trail Crew

The most important thing in trail work is your personal well-being and safety. Are you fit? Do you know your limitations? Do you have the skills you need?

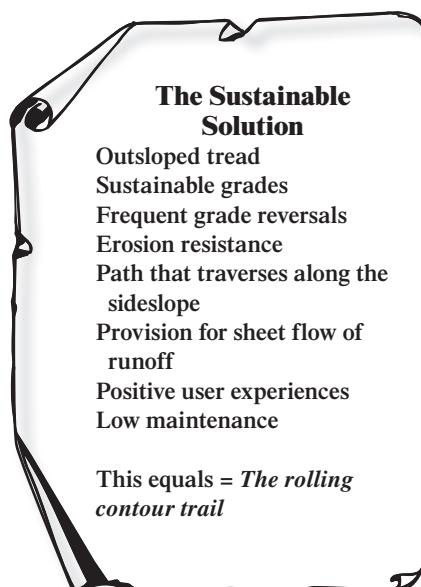
Your personal gear, clothing, and safety equipment are important. Let's start with your feet. Trail work can take you into rough country. Cut-resistant or leather nonskid boots, at least 200 millimeters (8 inches) high, offer the best support and ankle protection. They are required by the Forest Service if you are using cutting, chopping, or digging tools. Steel-toed boots are a good choice when working with rock. Ankle-high hiking boots are okay for some trail work. Sneakers or tennis shoes do not give enough support and protection. Be aware of regional differences. In southeastern Alaska, for example, rubber boots are the norm for most trail work.

Pants give more protection than shorts from cuts and scrapes, insects, and sunburn. Long-sleeved shirts are best for the same reasons. Bring your foul-weather gear. You won't forget work gloves more than once. Drinking water, lip moisturizer, sunscreen, sunglasses, insect repellent, and personal medications round out the list of personal items for your pack.

Hardhats are an agency requirement for many types of trail work, especially when swinging tools, working under the canopy of trees, or when there is any chance of being hit on the head. Other safety gear includes eye protection for any type of cutting or rock work, hearing protection near power equipment (85 dB or louder), and dust masks for some types of rock work and in extremely dusty conditions. Don't start the job unless you are properly equipped. Take a look at the Forest Service Health and Safety Code Handbook (FSH 6709.11) for some good information that could save your life.

Your crew will need a first aid kit. At least one person needs to be certified to give first aid and perform CPR (cardiopulmonary resuscitation). The project leader and involved employees will prepare a job hazard analysis that includes:

- An itinerary (planned route of travel, destination, estimated time of departure/arrival)


- The names of the employees on the crew
- Specific work hazards and abatement actions
- An emergency evacuation plan

Hold safety briefings before work begins and whenever conditions change significantly.

Setting Priorities

Priorities depend on many factors. Are you laying out and designing a new trail? If you are, start with good planning and a sustainable design to minimize future maintenance.

Are you assessing an older trail that may not be in the most ideal place? How much maintenance is too much? When do you decide to reroute sections?

If you're designing a new trail, make sure it will be sustainable (figure 1). What does that mean? Sustainability means creating and maintaining trails that are going to be here for a long time. Trails with tread that won't be eroded away by water and use. Trails that won't affect water quality or the natural ecosystem. Trails that meet the needs of the intended users and provide a positive user experience. Trails that do no harm to the natural environment.

Figure 1—A rolling contour trail resists erosion.

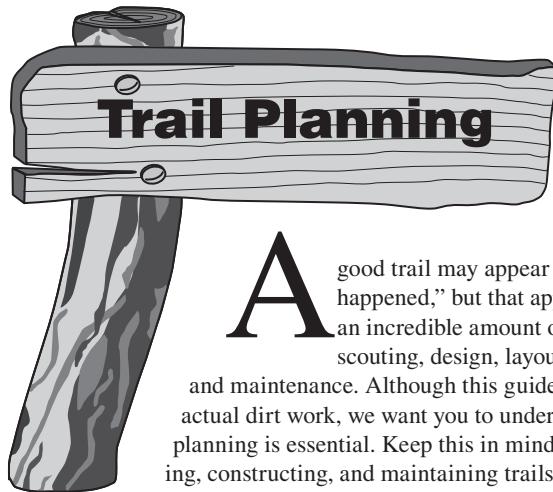
You need teachers and experience to learn how to lay out and design sustainable trails. Learn from the best. Shop around, talk to other trail builders, check out their work. Attend trail building sessions in your area or have a group of experienced trail builders, such as an IMBA Trail Care Crew (<http://www.imba.com/tcc/>) visit your area. Learn, learn, learn. You want people to come off your trail saying, “Wow—that was great! Let’s do it again.”

The trail crew’s task is to keep water off the tread and keep the users on it. The best trail maintainers are those with *trail eye*, the ability to anticipate physical and social threats to trail integrity and to head off problems.

Because there will always be more work to do than people or time to do it, how do you decide what to do? It’s important to:

- Monitor trail conditions closely.
- Decide what can be accomplished as basic maintenance.

- Determine what can be deferred.
- Identify the areas that will need major work.


Trail triage will help you spend your maintenance dollars wisely.

Trail Triage

1. Correct truly unsafe situations. As examples, repair impassable washouts along a cliff and remove blowdown from a steep section of a trail used by packstock.
2. Correct problems that are causing significant trail damage, such as erosion.
3. Restore the trail to the planned design standard. The ease of finding and traveling the trail should match the design specifications for the recreational setting and target users. Actions can range from simply adding reassurance markers along a trail to a full-blown reroute of poorly designed sections of eroded trail.

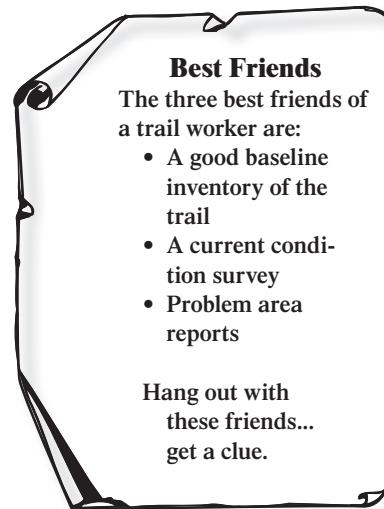
Whatever the priority, maintain the trail when the need is first noticed to prevent more severe and costly damage later.

A good trail may appear to have “just happened,” but that appearance belies an incredible amount of work in scouting, design, layout, construction, and maintenance. Although this guide focuses on actual dirt work, we want you to understand that solid planning is essential. Keep this in mind when designing, constructing, and maintaining trails (figure 2).

Recreation trails are for all people. They allow us to go back to our roots. Trails help humans make sense of a world increas-

Figure 2—Design and construct your trail to fit the land.

ingly dominated by automobiles and pavement. They put us in touch with our natural surroundings, soothe our psyches, challenge our bodies, and allow us to practice traditional skills.


Human psychology also plays a role. A useful trail must be easy to find, easy to travel, and convenient to use. Trails exist simply because they are an easier way of getting someplace. Many trails, such as wilderness trails, motorcycle routes, or climbing routes, are deliberately challenging with a relatively high degree of risk. Rest assured, however, that if your official trail isn't the *path of least resistance*, users will create their own trail. Your trail must be more obvious, easier to travel, and more convenient than the alternatives or you're wasting your time and money.

Accessible Trails

The Forest Service Trail Accessibility Guidelines (FSTAG), which became official agency policy in May 2006, recognize and protect the environment and the natural setting while integrating accessibility where possible. These guidelines are available at <http://www.fs.fed.us/recreation/programs/accessibility>.

Forest Service trail designers must approach the design of hiker or pedestrian trail projects that connect to an accessible trail or trailhead with the intent of developing trails that are accessible to all users, including those with disabilities. Four "conditions for departure" waive the accessibility requirements for most existing primitive, long-distance trails, and new trails built on very steep terrain. The guidelines apply only on National Forest System lands.

To help trail designers integrate the requirements of the Trail Accessibility Guidelines into planning, design, construction, and maintenance of trails, the Forest Service developed the "Accessibility Guidebook for Outdoor Recreation and Trails." The guidebook provides detailed information about accessibility requirements in an

easy-to-use format with photos, illustrations, design tips, hotlinks, and sidebars. The guidebook is available at <http://www.fs.fed.us/recreation/programs/accessibility>.

Avoiding Trail Disasters

If you've ever encountered a trail disaster, chances are that it resulted from short-circuited planning. Acts of

God aside, some of the worst trail problems result from not doing the hard work of thinking before putting on the gloves and hardhat. Some glaring examples are:

- Building out-of-rhythm sections (abrupt turns). Why did this happen? The trail's rhythm and flow weren't checked before cutting it in.
- Water funneling down and eroding the tread. Why did this happen? The trail grade was designed too steep.
- Multiple trails. Why did this happen? The trail wasn't laid out in the best place to begin with.

Planning is stupidity avoidance. Do good planning for all levels of trail work.

Good planning also includes monitoring the trail's condition. It's hard to do good planning until you have some idea of the current situation and trend.

Our focus in this notebook is field work, but other important work goes into trail planning. Requirements for trail planning vary, but they usually include consulting soil scientists, bridge and geotechnical engi-

neers, fisheries and wildlife biologists, recreation planners, landscape architects, and persons skilled in documenting environmental and permitting requirements.

Planning the Route on the Map

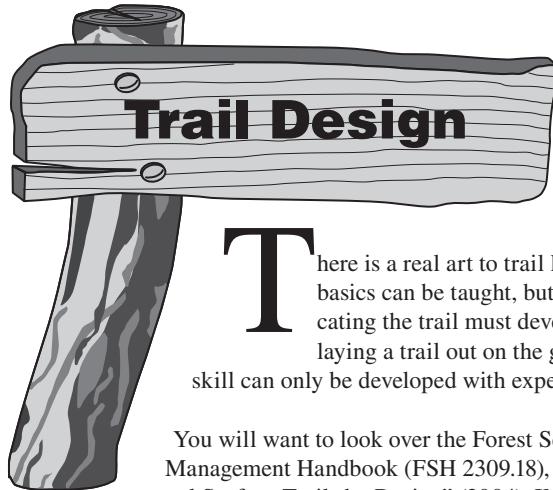
Be certain you know the trail management objectives (TMOs) for your trail—things like the intended users, desired difficulty level, and desired experience. TMOs provide basic information for trail planning, management, and reporting.

Use topographic maps and aerial photos to map the potential route. On the map, identify control points—places where the trail has to go, because of:

- Destination
- Trailheads
- Water crossings
- Rock outcrops

Include ***positive control points***—features such as a scenic overlook, a waterfall, or lakes.

Avoid ***negative control points***—areas that have noxious weeds, threatened and endangered species, critical wildlife habitat, or poor soils.

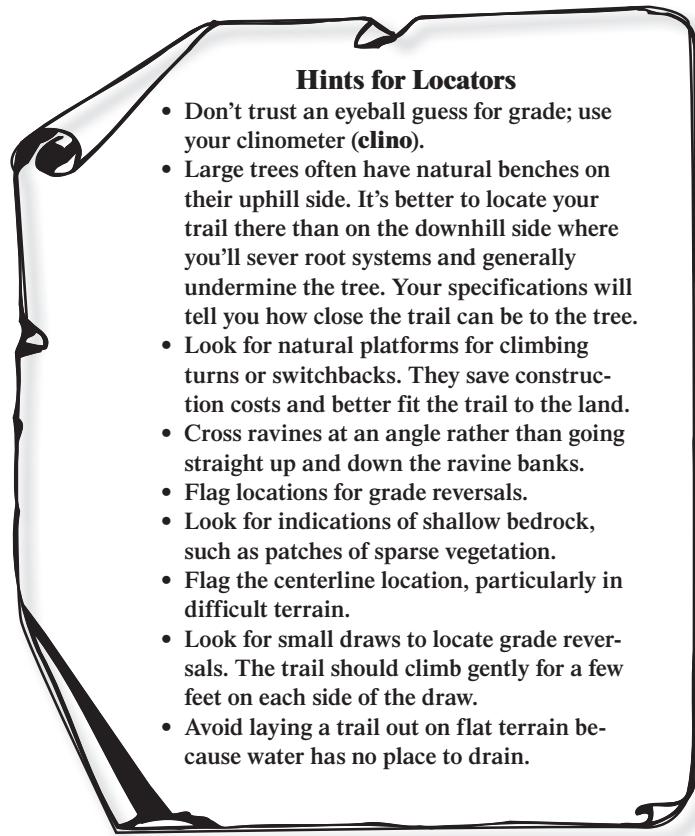

The 10-Percent Guideline

When plotting the trail on a map, connect the control points, following contour lines. Keep the grade of each uphill and downhill section less than 10 percent. Plotting your trail with 10-percent grades on a topographic map will help keep the route at a sustainable grade. When you get into the field to start scouting the route, you'll have better flexibility to tweak the grades.

Percent Grade

- Grade can be expressed as a percent or an angle. Percent is easier to understand.
- *Percent* grade equals the *rise* (elevation change) divided by the *run* (horizontal distance) multiplied by 100.
- Example: $\frac{\text{rise of 10 feet}}{\text{run of 100 feet}} \times 100 = 10 \text{ percent}$
- Elevation change, up or down, is always a positive number.

There is a real art to trail layout. Some basics can be taught, but the person locating the trail must develop an eye for laying a trail out on the ground. This skill can only be developed with experience.


You will want to look over the Forest Service Trails Management Handbook (FSH 2309.18), Parker's "Natural Surface Trails by Design" (2004), IMBA's "Trail Solutions" (2004), and MTDC's "Building Mountain Bike Trails: Sustainable Singletrack" DVD (Davies and Outka-Perkins 2006). These references have a lot of good information to help you do a good job of trail layout.

Scouting the Route in the Field

Tools to scout the route include: clinometer, compass, altimeter, GPS receiver, flagging of different colors, wire pin flags, roll-up pocket surveyor's pole, permanent marker to write notes on the flagging, field book, probe to check soil depth to bedrock, and maps. The objectives of scouting or reconnaissance are to:

- Verify control points and identify additional control points that you did not spot when you were studying the maps and aerial photos.
- Verify that the mapped route is feasible.
- Find the best alignment that fits all objectives.

- Identify additional positive control points to enhance the user's experience.
- Validate that the route is reasonable to construct and maintain.

Field scouting requires sound knowledge of map and compass and of finding your way on the ground. Begin with the theoretical route, then try different routes until you find the best continuous route between control points. **Walk, walk, walk.** Keep field notes of potential routes.

It may be useful to hang reference flags at potential control points or features so they are easier to relocate later.

Reconnaissance is easiest with two people. You and your partner need to use a clinometer to determine sustainable grades.

The Half Rule

Building sustainable trail grades helps keep maintenance at bay. So what makes a grade sustainable? This design element comes from IMBA's "Trail Solutions" book (2004). It's called the **half rule**.

The half rule says that the trail grade should be no more than half the sideslope grade (figure 3). This rule really helps when putting trails on gentle sideslopes. For example, if you're working on a hill with a

Figure 3—The trail grade shouldn't be more than half the grade of the sideslope. This is the half rule.

6-percent sideslope, your trail grade should be no more than 3 percent. If the trail is any steeper, it will be a fall-line trail.

Fall-line trails let water funnel down, causing erosion and ruts. As sideslopes get steeper, trails designed using the half rule can be too steep. Use your judgment and knowledge of the particular area.

Trail Specifications

Specifications are important too. You'll want to refer to the Forest Service Trails Management Handbook (FSH 2309.18) for guidelines on building almost any type of trail.

All trails are not created equal. Ideally, each trail is designed, constructed, and maintained to meet certain specifications. These specifications are based on the recreational activities the trail is intended to provide, the amount of use, and the physical characteristics of the land. Ecological and esthetic considerations are also important.

For example, a narrow winding trail might be the right choice for foot traffic in the backcountry (figure 4), while a wider trail tread with broad sweeping turns would be appropriate for an ATV (all-terrain vehicle) route. A smooth trail with gentle grades (figure 5) is more appropriate for an interpretive trail or a trail designed for persons with disabilities. Challenging trails that include rocky boulder fields and some jumps might be designed for mountain bikes and motorcycles.

The steepness of the hillside determines how difficult a trail is to build. The steeper the hillside, the more excavation will be needed to cut in a stable backslope. Trail grade also has a direct bearing on how much design, construction, and maintenance work will be needed to establish solid tread and keep it solid. Grades range from 1 percent for wheelchair access to 50 percent or greater for scramble routes. Most high-use trails should be constructed with an average trail grade in the

5- to 10-percent range. Trails of greater difficulty can be built at grades approaching 15 percent if solid rock is available. Trails steeper than 20 percent become difficult to maintain in the original location without resorting to steps or hardened surfaces.

Figure 4—A narrow, winding trail might be the right choice for foot traffic in the backcountry.

Figure 5—Two friends enjoy an accessible trail that allows them to hike through the rain forest.

Flagging

Use *flagging tape* to mark the trail opening or corridor. Use colors that stand out from the vegetation. Fluorescent pink should work in most areas.

You will need to use the clinometer to keep the trail's grade within the limits of the half rule.

Using the Clinô: Zeroing Out

- You and your partner stand on flat ground facing each other.
- Look through the clinô and line up the horizontal line on zero.
- Open your other eye and see where the horizontal line intersects a spot on your partner.
- Use this spot on your partner for reading grades with the clinô.
- Always read the scale on the right—this is the percent scale.

Two or More Persons

Flagging—Stand on the centerline point, direct your partner ahead to the desired location, then take a reading with your clinô. When the desired location is determined, the front person ties a piece of flagging on vegetation with the knot facing the intended trail, then moves ahead. The person with the clinô moves up to the flagging and directs the next shot. A third person can be scouting ahead for obstacles or good locations.

One-Person Flagging—

Stand at a point that is to be the centerline and tie flagging at eye level. Then move about 3 to 6 meters (10 to 20 feet) to the next centerline point and sight back to the last flag. When you have the desired location, tie another piece of flagging at eye level.

Flagging the Route—Flagging marks your intended trail layout on the ground. While flagging the route, you will discover impassable terrain, additional control points, and obstacles that weren't evident on the map. Use different colors of flagging for the other possible routes as you lay in the trail options. Always use a clinô to measure sustainable grades.

Go Flashing

If you're working in heavy brush and you can't see your partner through the clinô, have your partner wiggle a bright flashlight.

Start by tying flagging to the branches of trees at eye level and about every 3 meters (10 feet). Don't forget to tie the knot so that it faces the intended trail location. This way, if another crew continues the work, they will know your intentions.

Don't scrimp. Flagging is cheap compared with the time spent locating the route. Animals carry off flagging, and wind blows it down. Flagging that is close together helps trail designers and builders visualize the flow of the trail.

If you are working in an open area without trees or shrubs, use pin flags instead of flagging.

Marking the Final Alignment—Pin flags mark the exact location of the trail tread (figure 6). *Pin flags* can be placed on the trail's centerline or on its uphill or downhill side. Just make sure the crew knows where the trail will be relative to the pin flags. Place pin flags every 3 meters (10 feet) or so. More is better.

Figure 6—Pin flags mark the exact location of the trail tread and give you a good feel for the flow of the trail.

Smart Idea
Always use a clinometer to measure grades.

Tie the knot of the flagging so it faces the intended trail.

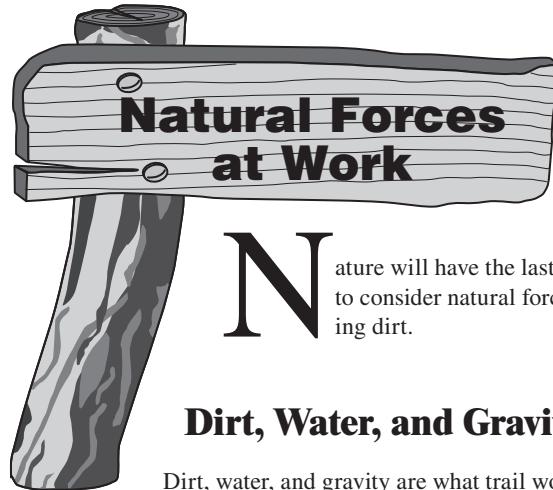
Line your intended trail with pin flags. Use plenty of these flags—they will help you visualize the trail flow.

Run or walk this route. Make final adjustments to get the trail's flow just right before cutting any vegetation.

Now, run or walk the trail. This gives you a good feel for the flow of the trail. Make adjustments and move the flags if a turn feels too sharp or a section has too much straight-away. When your trail alignment feels really good and you're satisfied with the locations of the pin flags, have the land manager check your design. You'll need to have the manager's approval before cutting any vegetation or removing any dirt.

Light on the Land

No discussion of trails is complete without attention to esthetics. We're talking scenic beauty here. Pleasing to the eye.


The task is simple. An esthetically functional trail is one that fits the setting. It lies lightly on the land and often looks like it just "happened."

Well-designed trails take advantage of natural drainage features, reducing maintenance that might be needed, while meeting the needs of the users. The trail might pitch around trees and rocks, follow natural benches, and otherwise take advantage of natural land features (figure 7).

Figure 7—Well-designed trails take advantage of natural land features.

The best trails show little evidence of the work that goes into them. A little extra effort spent limbing properly, scattering cut vegetation widely, blending backslopes, avoiding drill hole scars, raking leaves back over the scattered dirt, and restoring borrow sites pays off in a more natural-looking trail. Be a master. Do artful trail work.

Nature will have the last word. It's best to consider natural forces before moving dirt.

Dirt, Water, and Gravity

Dirt, water, and gravity are what trail work is all about. *Dirt* is your trail's support. Terra firma makes getting from point A to point B possible. The whole point of trail work is to get dirt where you want it and to keep it there. *Water* is the most powerful stuff in your world. *Gravity* is water's partner in crime. Their mission is to take your precious dirt to the ocean. The whole point of trail work is to keep your trail out of water's grip (figure 8).

Figure 8—Water and gravity join forces to erode trail tread.

It's much more important to understand how the forces of water and gravity combine to move dirt than it is to actually dig dirt. If you put in many years building trails, you will see hundreds of examples of trails built with little understanding of the forces at hand. You will save time, money, and your sanity if you get grounded in the basic physics.

Water in the *erode mode* strips tread surface, undercuts support structures, and blasts apart fill on its way downhill. The amount of damage depends on the amount of water involved and how fast it is moving.

Water has *carrying capacity*. More water can carry more dirt. Faster water can carry even more dirt. You need to keep water from running down the trail! When and where you can do that determines the sort of water control or drainage structure you use.

Signs of Success

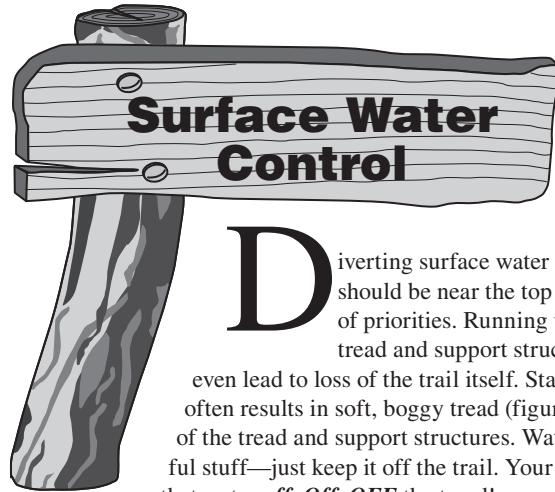
You have mastered dirt, water, and gravity when you can:

- Keep surface water from running down the trail.
- Keep tread material on the trail and keep it well drained.

Water also can affect soil strength. While the general rule of thumb is that drier soils are stronger (more cohesive) than saturated soils, fine, dry soils may blow away. The best trail workers can identify basic soils in their area and know their wet, dry, and wear properties. They also know plant indicators that tell them about the underlying soil and drainage.

Critter Effects

Gravity has a partner—the critter. Critters include packstock, pocket gophers, humans, bears, elk, deer, cows, and sheep. Critters burrow through the tread, walk around the designated (but inconvenient) tread,


tightrope walk the downhill edge of the tread, shortcut the tread, roll rocks on the tread, chew up the tread, or uproot the tread.

Gravity waits in glee for critters to loosen up more soil. If you recognize potential critter effects (especially from humans, deer, elk, domestic livestock, and packstock), you can beat the system for awhile and hang onto that dirt:

- Don't build switchbacks across a ridge or other major "game route."
- Don't let tread obstacles like bogs or deeply trenched tread develop.
- Make it inconvenient for packstock to walk the outer edge of your tread.

Your trail strategies are only as good as your understanding of the critter's mind.

Diverting surface water off the trail should be near the top of your list of priorities. Running water erodes tread and support structures, and can even lead to loss of the trail itself. Standing water often results in soft, boggy tread (figure 9) or failure of the tread and support structures. Water is wonderful stuff—just keep it off the trail. Your job is to keep that water *off, Off, OFF* the tread!

Figure 9—Standing water results in soft, boggy tread.

The very best drainage designs are those built into new construction. These include frequent grade reversals and outsloping the entire tread. The classic mark of good drainage is that it's self maintaining, requiring minimal care.

Sheet Flow

When rain falls on hillsides, after the plants have all gotten a drink, the water continues to flow down the hill in dispersed sheets—called *sheet flow* (figure 10). All the design elements for a rolling contour trail—building the trail into the sideslope, maintaining sustainable grades, adding frequent grade reversals, and outsloped tread—let water continue to sheet across the trail where it will do little damage.

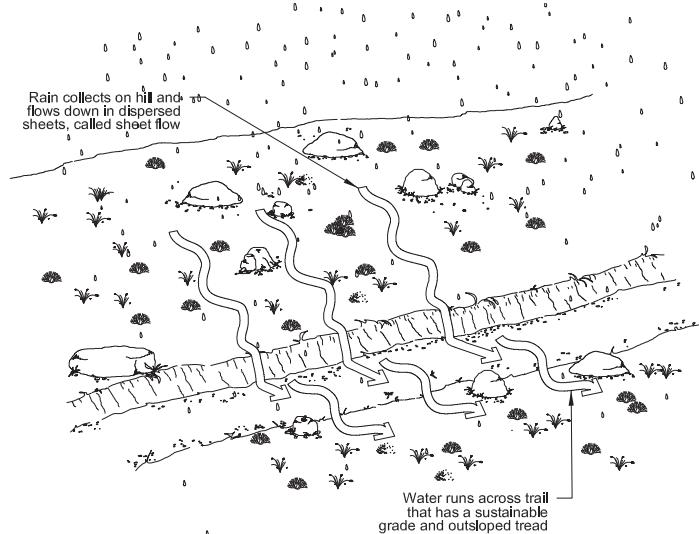


Figure 10—Design elements for a rolling contour trail let water sheet across the trail. Sheet flow prevents water from being channeled down the trail, where it could cause erosion.

Grade Reversals

Sometimes, grade reversals are called grade dips, terrain dips, Coweeta dips, or swales. For less confusion, let's call them *grade reversals*. The basic idea is to use a reversal in grade to keep water moving across the trail. Grade reversals are designed and built into *new trails*.

A trail with grade reversals and outsloped tread encourages water to continue sheeting across the trail—not down it. The beauty of grade reversals is that they are the most unobtrusive of all drainage features if they are constructed with smooth grade transitions. Grade reversals require very little maintenance.

Grade reversals take advantage of natural dips in the terrain (figure 11). The grade of the trail is reversed for about 3 to 5 meters (10 to 15 feet), then “rolled” back over to resume the descent. Grade reversals should be placed frequently, about every 5 to 15 meters (20 to 50 feet). A trail that lies lightly on the land will take advantage of natural dips and draws for grade reversals. The trail user's experience is enhanced by providing an up-and-down motion as the trail curves up and around large trees (figure 12) or winds around boulders.

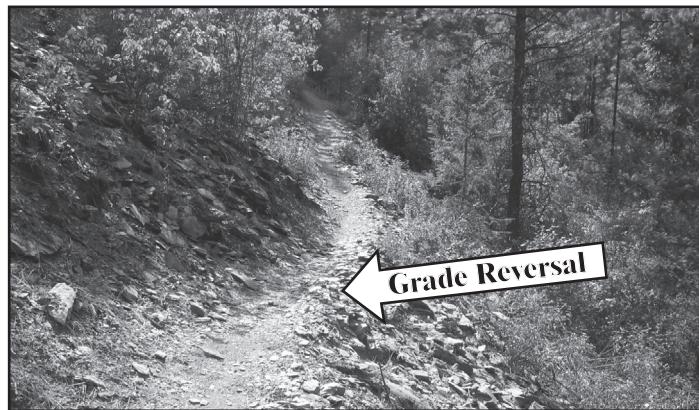


Figure 11—Grade reversals are much more effective than waterbars and require less maintenance. Grade reversals with outsloped tread are the drainage structure of choice.

Figure 12—Enhance the user's experience and create a grade reversal by curving the trail around large trees and rocks.

Draining Water Off Existing Trails

Water will always find the path of least resistance—most likely your trail! Gullies form as water eats away the tread material on steep trails. Puddles sit in low-lying areas that leave the water nowhere to go. When water starts destroying your trail, trail users start skirting around the damage. The trail becomes wider or multiple new trails are formed.

Getting water off the trail takes more than digging a drainage ditch. Find out where the water is coming from, then find a way to move it off the trail.

When a crew takes a swipe at the berm with a shovel or kicks a hole through it—that's useless drainage control. These small openings are

rapidly plugged by floating debris or the mud-mooshing effect of passing traffic. The erosion lives on.

Knicks

Puddles that form in flat areas on existing trails may cause several kinds of tread damage. Traffic going around puddles widens the trail (and eventually the puddle). Standing water usually weakens the tread and the backslopes. Water can cause a bog to develop if the soils are right. Traffic on the soft lower edge of a puddle can lead to *step-throughs*, where users step through the edge of the trail, breaking it down. Step-throughs are one of the causes of tread creep.

The *knick* is an effective outsloped drain. Knicks are constructed into *existing trails* (figure 13). For a knick to be effective, the trail tread must have lower ground next to it so the water has a place to drain. A

Figure 13—Knick constructed into existing trails will drain puddles from flat areas.

knick is a shaved down semicircle about 3 meters (10 feet) long that is outsloped about 15 percent in the center (figure 14). Knicks are smooth and subtle and should be unnoticeable to users.

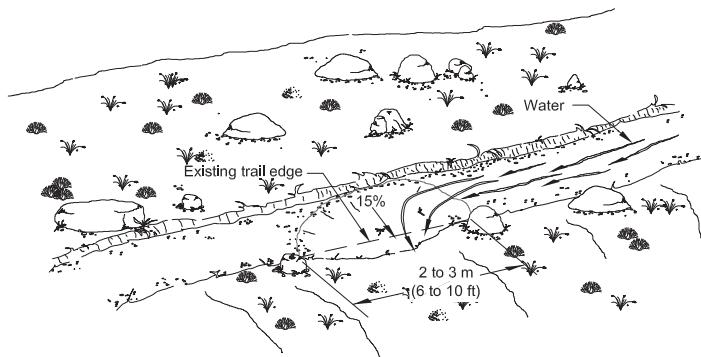


Figure 14—A knick is a semicircle cut into the tread, about 3 meters (10 feet) long and outsloped 15 percent in the center.

If terrain prevents such outsloping, the next best solution is to cut a **puddle drain** at least 600 millimeters (24 inches) wide, extending across the entire width of the tread. Dig the drain deep enough to ensure that the water will flow off the tread. Feather the edges of the drain into the tread so trail users don't trip. Plant rocks or other large stationary objects (guide structures) along the lower edge of the tread to keep traffic in the center. In a really long puddle, construct several drains at what appear to be the deepest spots.

Rolling Grade Dips

Another way to force water off *existing trails* is to use a **rolling grade dip**. A rolling grade dip is used on steeper sections of trail. It also works well to drain water off the lower edge of contour trails. A rolling grade dip builds on the knick design. A rolling grade dip is a knick with a long ramp about 4 ½ meters (15 feet) built on its downhill side (figure 15). For example, if a trail is descending at a 7-percent grade, a rolling grade dip includes:

- A short climb of 3 to 5 meters (10 to 20 feet) at 3 percent
- A return to the descent (figure 16).

Water running down the trail cannot climb over the short rise and will run off the outsloped tread at the bottom of the knick. The beauty of this structure is that there is nothing to rot or be dislodged. Maintenance is simple.

Figure 15—Rolling grade dips direct water off steeper sections on existing trails.

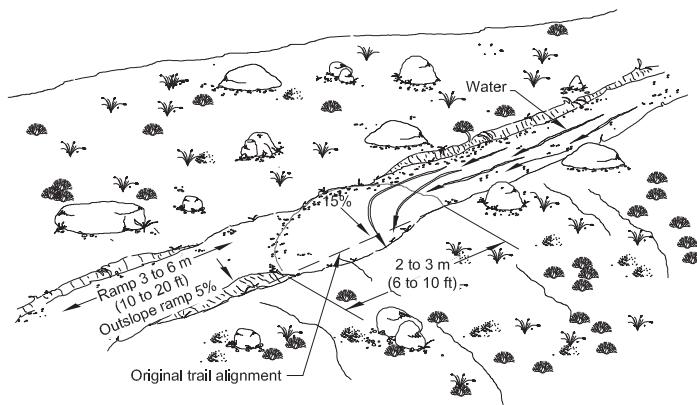


Figure 16—A rolling grade dip builds on the knick design. It helps direct water off steeper sections of existing trail.

Rolling grade dips should be placed frequently enough to prevent water from building up enough volume and velocity to carry your tread's surface away. Rolling grade dips are pointless at the top of a grade. Mid-slope usually is the best location. The steeper the trail, the more rolling grade dips will be needed. Rolling grade dips should not be constructed where they might send sediment-laden water into live streams.

Waterbars

Waterbars are commonly used drainage structures. Make sure that waterbars are installed correctly and are in the right location. Water moving down the trail turns when it contacts the waterbar and, in theory, is directed off the lower edge of the trail (figure 17).

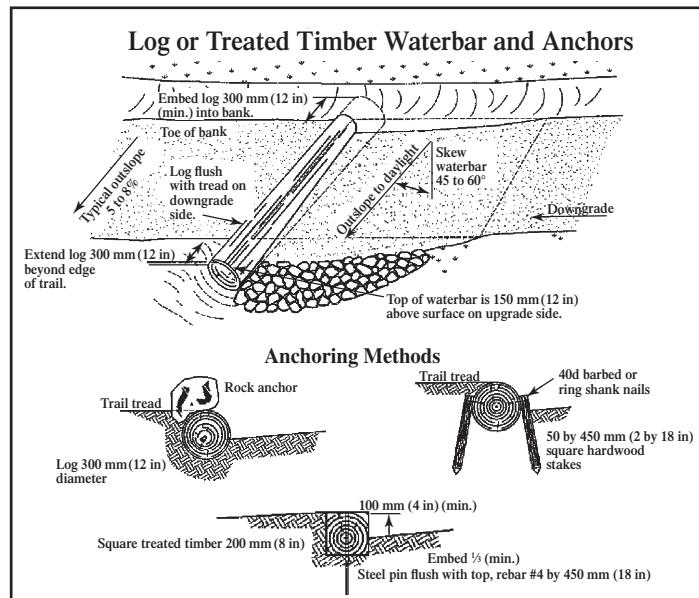


Figure 17—Logs used for waterbars need to be peeled (or treated with preservative), extended at least 300 millimeters (12 inches) into the bank, staked or anchored, and mostly buried.

Dips Are In, Bars Are Out

For existing trails with water problems, we encourage the use of rolling grade dips or knicks instead of waterbars. Here's why. By design, water hits the waterbar and is turned. The water slows down and sediment drops in the drain.

Waterbars commonly fail when sediment fills the drain. Water tops the waterbar and continues down the tread. The waterbar becomes useless. You can build a good rolling grade dip quicker than you can install a waterbar, and a rolling grade dip works better.

On grades of less than 5 percent, waterbars are less susceptible to clogging unless they serve a long reach of tread or are constructed in extremely erodible tread material. On steeper grades (15 to 20 percent), waterbars are prone to clogging if they are at less than a 45-degree angle to the trail. Waterbars are mostly useless for grades steeper than 20 percent. At these grades a very fine line exists between clogging the drain and eroding it (and the waterbar) away.

Most waterbars are not installed at the correct angle, are too short, and don't include a grade reversal. Poorly constructed and maintained waterbars become obstacles and disrupt the flow of the trail. The structure becomes a low hurdle for travelers, who walk around it, widening the trail.

A problem with wooden waterbars is that horses can kick them out. Rock, if available, is always more durable than wood (figure 18). Cyclists of all sorts hate waterbars because the exposed surface can be very slippery, leading to crashes when a wheel slides down the face of the waterbar. As the grade increases, the angle of the waterbar (and often the height of its face) is increased to prevent sedimentation, raising the crash-and-burn factor.

Rock Waterbar

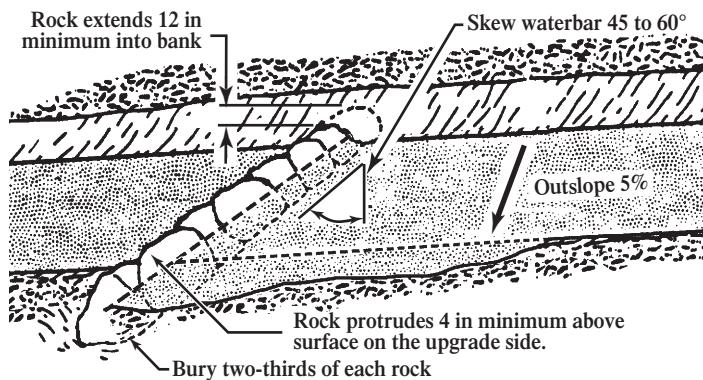


Figure 18—Waterbars need to be constructed at a 45- to 60-degree angle to the trail. Rock waterbars are more durable than wood.

Are waterbars ever useful? Sure. Wood or rock waterbars are useful on foot and stock trails where a tripping hazard is acceptable, especially at grades less than 5 percent. Also consider reinforced or armored grade dips where you don't have much soil to work with and in areas that experience occasional torrential downpours.

A variation from the traditional waterbar is the *waterbar with riprap tray*. The riprap tray is built with rock placed in an excavated trench. The tops of the rocks are flush with the existing tread surface, so they're not an obstacle to traffic. Next, construct a rock waterbar. Use *rectangular rocks*, chunkers, butted together, not overlapped. Start with your heaviest rock at the downhill side—that's your *keystone*. Lay rocks in from there until you tie into the bank. Bury two-thirds of each rock at a 45- to 60-degree angle to the trail.

Add a retainer bar of rock angled in the opposite direction from the waterbar. The downhill edge of the retainer bar is at an angle so it nearly touches the downhill edge of the waterbar (figure 19). Fill the space between the waterbar and retainer with compacted tread material.

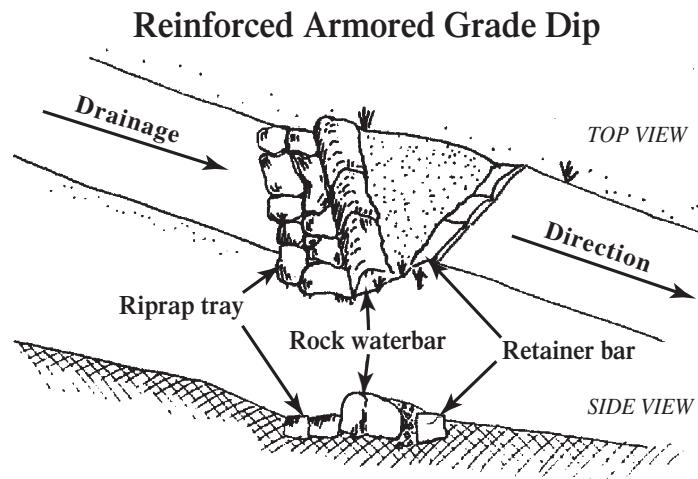


Figure 19—A waterbar with a riprap tray.

Maintaining the Drain

The number one enemy of simple drains is sediment, especially at waterbars. If the drain clogs, the water you are trying to get rid of either continues eroding its way down the tread, or just sits there in a puddle.

The best drains are self-cleaning; that is, the flow of water washes sediment out of the drain, keeping it clean. In the real world most drains collect debris and sediment that must be removed or the drain will stop working. Because it may be a long time between maintenance visits, the drain needs to handle annual high-volume runoff without failing (figure 20).

The best cure for a waterbar that forces the water to turn too abruptly is to rebuild the structure into a rolling or armored grade dip.

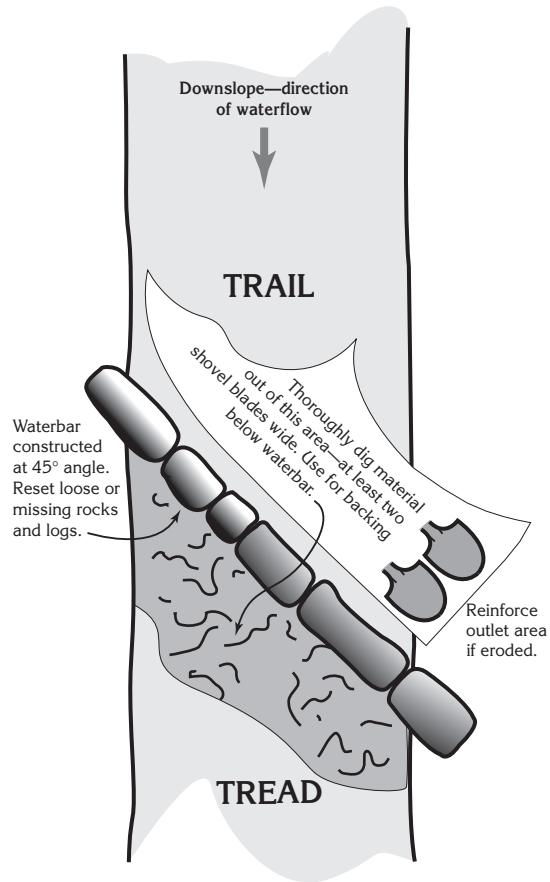
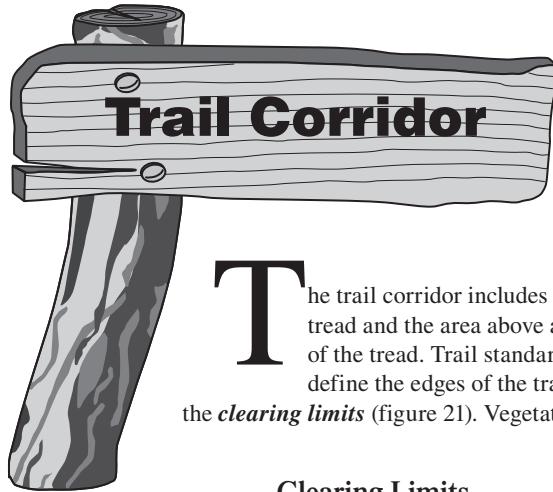


Figure 20—The key to waterbar maintenance is to ensure that sediment will not clog the drain before the next scheduled maintenance. Embed the rocks or logs a little deeper, cover them with soil, and you have a reinforced waterbar.

Walking in the Rain

A lot of learning takes place when you slosh over a wet trail in a downpour and watch what the water is doing and how your drains and structures are holding up. Figure out where the water is coming from and where it's going. Think about soil type, slope, distance of flow, and volume of water before deciding your course of action.


Relocating Problem Sections of Trail

If you've tried various drainage methods and water is still tearing up your trail, it's time to think seriously about rerouting the problem sections. Reroutes are short sections of newly constructed trail. This is your chance to incorporate all the good design features of a rolling contour trail that encourages water to sheet across the trail. Remember the good stuff:

- Locating the new section of trail on a sideslope
- Keeping the trail grade less than half of the grade of the hillside
- Building with a full bench cut to create a solid, durable tread
- Constructing plenty of grade reversals
- Outsloping the tread
- Compacting the entire trail tread

Make sure the new section that connects to the old trail has nice smooth transitions—no abrupt turns.

Some short sections of eroded trails may not be major problems. If the trail surface is rocky—and water, use, and slopes are moderate—this section could eventually stabilize itself. A short section of eroded trail may cause less environmental damage than construction of a longer rerouted section. Weigh your options wisely.

The trail corridor includes the trail's tread and the area above and to the sides of the tread. Trail standards typically define the edges of the trail corridor as the *clearing limits* (figure 21). Vegetation is trimmed

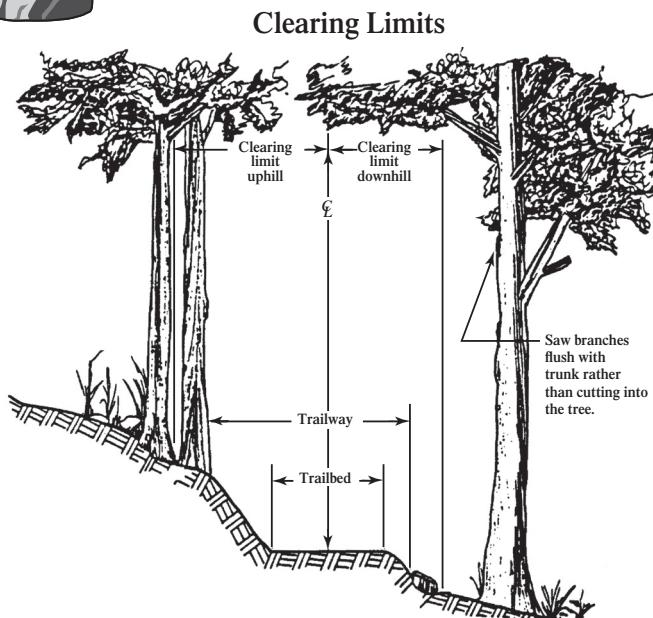


Figure 21—Terms describing the trail corridor clearing limits. You need to understand these terms to clear a trail to specifications.

back and obstacles, such as boulders and fallen trees, are removed from the trail corridor to make it possible to ride or walk on the tread.

The dimensions of the corridor are determined by the needs of the target users and the challenge of the trail. For example, in the Northern Rockies, trail corridors for traditional packstock are cleared 2.5 meters (8 feet) wide and 3 meters (10 feet) high. Hiking trails are cleared 2 meters (6 feet) wide and 2.5 meters (8 feet) high. Check with your local trail manager to determine the appropriate dimensions for each of your trails.

Clearing and Brushing

Working to wipe out your trail is no less than that great nuclear furnace in the sky—Old Sol, the sun. Old Sol and the mad scientist, Dr. Photosynthesis, convert dirt and water into a gravity-defying artifice called a plant. Seasoned trail workers will attest to the singular will and incredible power of plants. No sooner is a trail corridor cleared of plants than new ones rush toward this avenue of sunlight.

Plants growing into trail corridors or trees falling across them are a significant threat to a trail's integrity. Brush is a major culprit. Other encroaching plants such as thistles or dense ferns may make travel unpleasant or even hide the trail completely. If people have trouble traveling the trail tread, they'll move over, usually along the lower edge, or make their own trail. Cut this veggie stuff out (figure 22)!

In level terrain, the corridor is cleared an equal distance on either side of the tread's centerline. For a hiking trail, this means that the corridor is cleared for a distance of 1 meter (3 feet) either side of center. Within 300 millimeters (1 foot) of the edge of the tread, plant material and debris should be cleared all the way to the ground. Farther than 500 millimeters (1.5 feet) from the trail edge, plants do not have to be cleared unless they are taller than 500 millimeters (1.5 feet) or so. Fallen logs usually are removed to the clearing limit.

Figure 22—This trail needs to be brushed. Cut the veggie stuff out.

On moderate to steep sideslopes, a different strategy may be useful. Travel along the lower (outer) edge of the tread is a common cause of tread failure. You can use trailside material to help hold traffic to the center of the tread. A downed log cut nearly flush with the downhill

edge of the trail will encourage travelers to move up to avoid it. Rocks, limbed trees, and the like can all be left near the lower edge of the tread to guide traffic back to the center so long as the guide material doesn't prevent water from draining off the trail (figure 23).

Figure 23—Rocks and logs help to keep the trail in place. Remember, this is a path through nature, not a monument to Attila the Hun.

The key is to make sure that this guide material does not interfere with travel on the center of the tread and does not block drainage. For example, bikers need enough room for their pedals to clear the backslope on one side of the trail and the guide materials on the other.

Something's Gotta Go

If time and budgets are tight, consider brushing only the uphill side of the trail. This approach keeps users off the trail's downhill edge and keeps the trail in place.

On the uphill side of the trail, cut and remove material farther from the centerline. For instance, on slopes steeper than 50 percent you may want to cut fallen logs or protruding branches within 2 meters (6½ feet) or more from the centerline (horizontal distance). This is particularly true if you're dealing with packstock because they tend to shy away from objects at the level of their head.

Clearing a **movable corridor** rather than clearing to a fixed height and width takes some thought. Doing so

may be difficult for inexperienced crews.

Finally, remember that the scorched earth look created by a corridor with straight edges is not very pleasing to the eye. Work with natural vegetation patterns to feather or meander the edges of your clearing work so you don't leave straight lines. Cut intruding brush back at the base of the plant rather than in midair at the clearing limit boundary. Cut all plant stems close to the ground. Scatter the resulting debris as far as practical. Toss stems and branches so the cut ends lie away from the trail (they'll sail farther through brush as well). Don't windrow the debris unless you really and truly commit to burn or otherwise remove it (and do this out of sight of the trail).

Rubbing the cut ends of trailside logs or stumps with soil reduces the brightness of a fresh saw cut. In especially sensitive areas, cut stumps flush with the ground and cover them with dirt, pine needles, or moss. Rub dirt on stobs or bury them. Here's where you can use your creativity. A carefully trimmed corridor can give a trail a special look, one that encourages users to return.

Some trails may have to be brushed several times a year, some once every few years. Doing a little corridor maintenance when it is needed is a lot easier than waiting until plant growth causes expensive problems.

Removing Trees

Usually, trees growing within the corridor should be removed. Remember that those cute little seedlings eventually grow into pack-snagging adolescent trees. They are a lot easier to pull up by the roots when they are small than they are to lop when they grow up.

Prune limbs close to the tree trunk. For a clean cut, make a shallow undercut first, then follow with the top cut. This prevents the limb from peeling bark off the tree as it falls. Do not use an ax for pruning.

If more than half of the tree needs pruning, it is usually better to cut it down (figure 24). Cut trees off at ground level and do not leave pointed stobs.

Figure 24—Something's wrong with these trees! Cut trees out when they need excessive pruning.

Logging out a trail means cutting away trees that have fallen across it. The work can be hazardous. The size of the trees you are dealing with, restrictions on motorized equipment, and your skill and training determine whether chain saws, crosscut saws, bow saws, or axes are used. Safety first!

You need training to operate a chain saw or a crosscut saw. Your training, experience, and level of certification can allow you to buck trees already on the ground or to undertake the more advanced (and hazardous) business of felling standing trees. Be sure you are properly trained and certified before cutting standing or fallen trees. Using an ax to cut standing or fallen trees poses similar hazards. Some trees may be felled more safely by blasting. Check with a certified blaster to learn where blasting is feasible.

Removing fallen trees is a thinking person's game. The required training will help you think through problems, so we won't relate the details here.

Cut fallen trees out as wide as your normal clearing limits on the uphill side, but closer to the trail on the downhill side. Roll the log pieces off the trail and outside the clearing limits on the downhill side. Never leave them across ditches or waterbar outflows. If you leave logs on the uphill side of the trail, turn or bury them so they won't roll or slide onto the trail.

Sometimes you'll find a fallen tree lying parallel with the trail. If the trunk of the tree is not within the clearing limits and you decide to leave it in place, prune the limbs flush with the trunk. Limbing the tree so it rests on the ground helps the trunk decay faster.

It is hard to decide whether or not to remove *leaners*, trees that have not fallen but are leaning across the trail. If a leaner is within the trail clearing zone, it should be removed. Beyond that, it is a matter of discretion whether a leaner needs to be cut. You need to consider the amount of use on the trail, how long it will be before the trail is maintained again, the soundness of the tree, and the potential hazard the leaner is creating (figure 25). Felling a leaner, especially one that is hung up in other trees, can be very hazardous. Only highly qualified

sawyers should work on leaners. Blasting is another way to remove leaners safely. When in doubt, tie flagging around the leaner and notify your supervisor.

Based on injury statistics, felling standing trees (including snags) is one of the most dangerous activities for trail workers. Do not even consider felling trees unless you have been formally trained and certified. Bringing in a trained sawyer is cheaper than bringing in a coroner.

Figure 25—If you are uncomfortable with your ability to safely cut a tree because of the hazards or your lack of experience, walk away.

Here's how you can make sure your trail has a strong, long-lasting foundation.

Rolling Contour Trails

Constructing contour trails into the sideslope requires excavating the side of the hill to provide a solid, stable trail tread. Stay away from flat areas because water has nowhere to go. Keep grades sustainable by using the half rule and add plenty of grade reversals. Slightly outsloping the tread (about 5 percent) is a must to help move water across the trail.

Full-Bench Construction

Trail professionals almost always prefer ***full-bench*** construction. A full bench is constructed by cutting the full width of the tread into the hillside and casting the excavated soil as far from the trail as possible (figure 26). Full-bench construction requires more excavation and leaves a larger backslope than partial-bench construction, but the trailbed will be more durable and require less maintenance. You should use full-bench construction whenever possible.

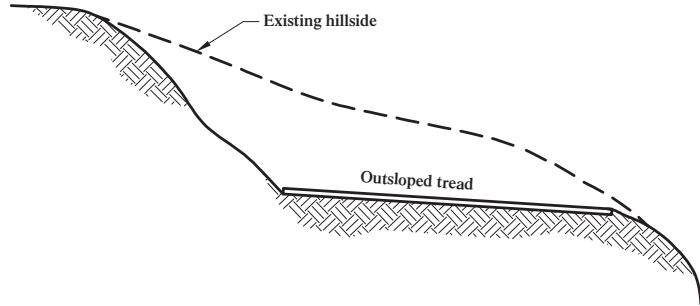


Figure 26—A full-bench trail is constructed by cutting the full width of the tread into the hillside. The tread needs to be outsloped at least 5 percent.

Partial-Bench Construction

Partial-bench construction is another method to cut in a trail, but it takes a good deal of trail-building experience to get this method right. The trail tread will be part hillside and part fill material (figure 27).

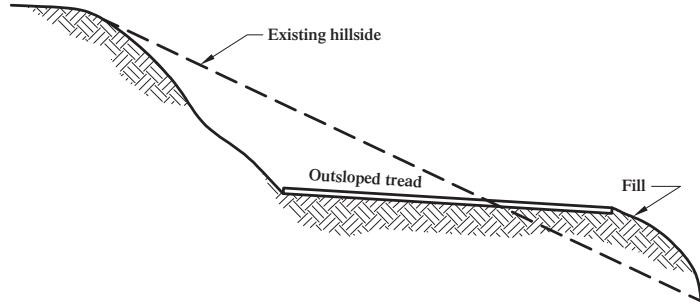


Figure 27—With partial-bench construction, the trail tread is part hillside and part fill material. The tread needs to be outsloped at least 5 percent.

The fillslope needs to be composed from good, solid material like rock or decay-resistant wood. And it has to get compacted evenly—this is the puzzle to solve. Solving Sudoku puzzles doesn't guarantee you'll get this one!

Backslope—The backslope is the excavated, exposed area above the tread surface. The backslope should match the angle of repose of the parent material (the sideslope). You may come across trail specifications calling for 1:1 backslope. This means 1 meter vertical rise to 1 meter horizontal run.

Most soils are stable with a 1:1 backslope. Solid rock can have a steeper 2:1 backslope, while less cohesive soils may need a 1:2 backslope (figure 28).

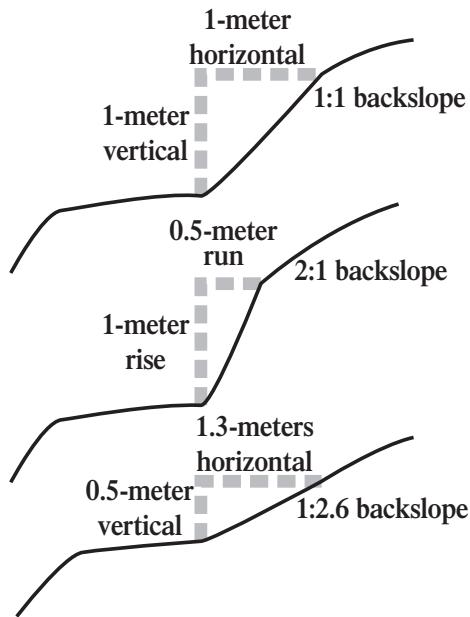


Figure 28—Backslopes are noted as a ratio of vertical rise to horizontal distance, or “rise” to “run.”

Bottom line, angle the backslope until loose material quits falling down onto the trail tread. Stabilize the entire backslope by compacting it with the back of a McLeod.

Stable Backslopes

Look at the surrounding landscape and soil to see areas that are stable. Create a somewhat gentler backslope than you think necessary. Although you will initially expose more raw soil, the chances of your trail remaining stable and revegetating are greater than if you leave a backslope so steep that it keeps sloughing.

One option to reduce back-slope excavation is to construct a retaining wall. This can be less obtrusive than huge backslope excavations and more stable if the wall is well constructed.

Fillslope—The fillslope is that area below the tread surface on the downhill side. A full-bench tread will not have any fill on this side of the trail. Fillslopes are critical. Fillslopes often need to be reinforced with retaining or crib walls to keep them from failing. Fillslope failures

are common and will wipe out the trail. That's why most trailbuilders prefer full-bench trails.

Moving Dirt

Looking at construction plans is one thing, but going out and building a rolling contour trail is quite another. Here is a proven method that works even for the complete novice. This procedure is for the actual dirt moving once vegetation has been cleared.

- Place pin flags to keep the diggers on course.
- Straddle a centerline flag and face uphill. Swing your Pu-laski or other tool to mark the area to be cleared. Where the tool strikes the hillside will be approximately the top of the backslope. The steeper the slope, the higher the backslope.

Do this at each centerline flag, then scratch a line between the tool strikes. This defines the area to be dug to mineral soil. Clear about the same distance below the flag. Keep the duff handy by placing it uphill. It will be used later. Don't clear more trail than can be dug in a day unless you know it isn't going to rain before you can complete the segment.

- Stand on the trail and work the tread parallel to the direction of travel. Level out the tread and get the right outslope. Don't continue facing uphill when you're shaping the tread, despite the tendency to do so.
- Make sure that the width of the rough tread is about the length of a Pulaski handle. The finished tread will be about right for a good hiking trail.
- Make sure grade reversals and other drainage structures are flagged and constructed as you go.
- Shape the backslope about as steep as the original slope. Backslope ratios are hard to understand. Instead, look at the natural slope and try to match it.
- Round off the top of the backslope, where the backslope meets the trail tread, and the downhill edge of the trail. Keeping these areas smooth and rounded will help water sheet across the trail.
- Walk the trail to check the tread's outslope. If you can feel your ankles rolling downhill, there is too much outslope (figure 29). The outslope should be barely detectable to the eye. A partially filled water bottle makes a good level or you can stand a McLeod on the trail tread—the handle should lean slightly downhill.
- Compact the entire tread, including the backslope, with the back of a McLeod. Don't leave compaction up to trail users. They will only compact the center, creating a rut that funnels water down the middle of the trail.
- Place the duff saved earlier onto the scattered dirt that was tossed downhill. The duff helps naturalize the outside edge and makes the new trail look like it has been there for years.
- Be careful not to create a berm with the duff.

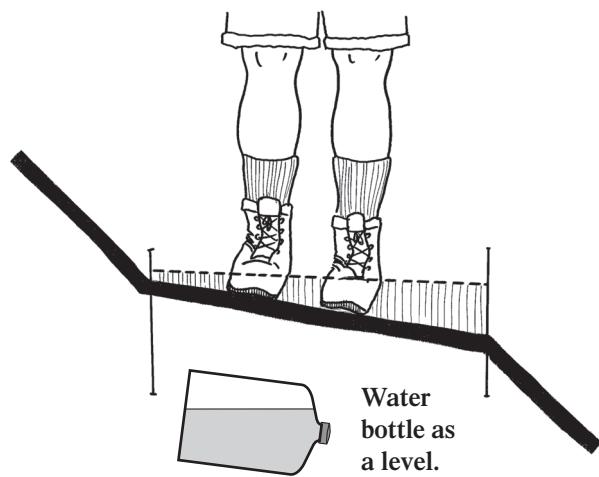
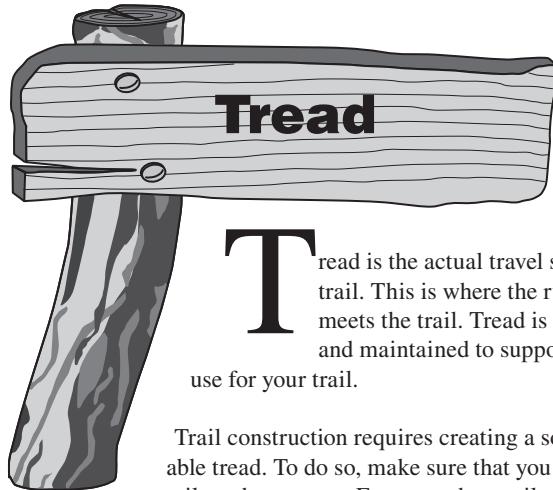



Figure 29—If your ankles start to roll, the tread has too much outslope.

Tread is the actual travel surface of the trail. This is where the rubber (or hoof) meets the trail. Tread is constructed and maintained to support the designed use for your trail.

Trail construction requires creating a solid, sustainable tread. To do so, make sure that you locate the trail on the contour. Forces such as soil type, annual precipitation, and other factors may influence how long the tread remains stable before maintenance is needed.

Soil type and texture have a major influence on soil drainage and durability. Texture refers to the size of individual soil particles. Clay and silt are the soil components with the smallest particles. Small particles tend to be muddy when wet and dusty when dry. Clay and silt don't provide good drainage. Sand is made of large particles that don't bind together at all and are very unstable.

The best soil type is a mixture of clay, silt, and sand. If your soil is lacking any one of these, you can attempt to add what's missing. Knowing the soil types that you will encounter when building trails will help you develop a solid, stable tread. A lot of information on soils can be found at the USDA Natural Resources Conservation Service (<http://soil.usda.gov>) office or at your county extension service office.

Get To Know Your Soil With the Ribbon Test

Roll a handful of moist soil into a tube shape with both hands. Squeeze it between your thumb and forefinger to form the longest and thinnest ribbon possible.

Texture	Feel	Ribbon
Sand	Grainy	Can't form a ribbon
Loam	Soft with some graininess	Thick and very short
Silt	Floury	Makes flakes rather than a ribbon
Sandy Clay	Substantial graininess	Thin, fairly long—50 to 76 mm (2 to 3 inches)—holds its own weight
Clay	Smooth	Very thin and very long—76 mm (3 inches)

The tread surface should match the intended use. Easier trails should have a smooth tread surface. Backcountry trails can be rougher and more challenging. Leaving some obstacles in the trail helps slow down users and reduce conflict.

Tread is also the travel surface on structures such as turnpikes and puncheon. Tread, whenever elevated, should be slightly crowned (higher in the center than on either side) to drain better.

Outsloping

An outsloped tread is one that is lower on the outside or downhill side of the trail than it is on the inside or bankside. Outsloping lets water sheet across the trail naturally. The tread should be outsloped at least 5 percent.

Loss of outslope is the first maintenance problem that develops on all trails. If you can do nothing else when budgets are tight, reestablish the outslope. Doing so pays big dividends.

Removing Roots and Stumps

Removing roots and stumps is hard work. Explosives and stump grinders are good alternatives for removing stumps, but chances are you'll have to do the work by hand. Often, a sharpened pick mattock or

Pulaski is used to chop away at the roots. If you are relying on some type of winch system to help you pull out the stump, be sure to leave the stumps high enough to give you something to latch onto for leverage.

Not all roots and stumps are problems. You should not have to remove many large stumps from an existing trail. Before you remove a stump, consider whether other crews might have left it to keep the trail from creeping downhill.

Rule of Thumb for Roots

- If roots are perpendicular to the tread, fairly flush, and not a tripping hazard, leave them.
- Remove roots that are parallel with the tread. They help funnel water down the trail and create slipping hazards.
- Route your trail above large trees. Building below trees undermines their root systems—even eventually killing the trees.

Rock Removal

Rock work for trails ranges from building rock walls to blasting solid rock. These tasks involve specialty work. When rock needs to be removed, a good blaster can save a crew an astounding amount of work. When rock needs to be used, someone building a rock retaining wall

may be a true artisan, creating a structure that lasts for centuries. Rock work requires good planning and finely honed skills.

The secret to moving large rocks is to think first. Plan where the rock should go and anticipate how it might roll. Be patient—when rocks are moved in a hurry they almost always end up in the wrong place. Communicate with all crewmembers about how the task is progressing and what move should occur next.

Tools of the trade include:

- Lots of high-quality rockbars. Don't settle for the cheap digging bars. You need something with high tensile strength.
- Pick mattock.
- Sledge hammer.
- Eye protection, gloves, and hardhat. Don't even think of swinging a tool at a rock without wearing the required personal protective equipment.
- Gravel box, rock bag, rucksack, rock litter—all useful for carrying rocks of various sizes.

Brains First, Muscle Last
Remember that the two most common injuries in rock work are pinched (or smashed) fingers and tweaked (or blown out) backs. Both sets of injuries are a result of using muscles first and brains last. High-quality rock work is almost always a methodical, even tedious, task. Safe work is **ALWAYS** faster than taking time out for a trip to the infirmary.

- Winch and cable systems. Some rocks can be dragged or lifted into place.
- All sorts of motorized equipment, including rock drills and rock breakers.

Blasting can help remove rocks or greatly reduce their size. Careful blasting techniques can produce gravel-sized material. Motorized equipment can be used to split boulders or to grind down obstacles in the tread. Chemical expansion agents can be poured into holes drilled into large rocks, breaking them without explosives. Drills and wedges can be used to quarry stone for retaining walls or guide structures. Devices like the Boulder Buster, Magnum Buster, and BMS Micro-Blaster crack rocks without explosives and can be used by persons who are not certified blasters.

Your specific trail maintenance specifications may call for removing embedded rocks. Use good judgment here. Often, large rocks are best removed by blasting. Other solutions include ramping the trail over them, or rerouting the trail around them.

Rocks should be removed to a depth of at least 100 millimeters (4 inches) below the tread surface, or in accordance with your specific trail standards. Simply knocking off the top of a rock flush with the existing tread may leave an obstacle after soil has eroded around the rock.

Rockbars work great for moving medium and large rocks. Use the bars to pry rocks out of the ground and guide them off the trail. When crewmembers have two or three bars under various sides of a large rock, they can apply leverage to the stone and virtually float it to a new location with a rowing motion. Use a small rock or log as a fulcrum for better leverage.

It may seem like fun at the time, but avoid the temptation to kick a large stone loose. When rocks careen down the mountainside they may knock down small trees, gouge bark, wipe out trail structures, or start rockslides.

Even worse, an out-of-control rock might cross a trail or road below you, hitting someone. If there is any possibility that people might be

below while rocks are being moved, close the trail or road, or post lookouts in safe locations to warn travelers.

You might construct a barrier of logs anchored by trees before trying to move the rock, preventing it from gaining momentum. Once a rock is moving, do not try to stop it.

When you need to lift rocks, be sure to keep your back straight and lift with the strong muscles of your legs. Sharing the burden with another person can be a good idea.

To load a large rock into a wheelbarrow, lean the wheelbarrow back on its handles, roll the rock in gently over the handles (or rocks placed there) and tip the wheelbarrow forward onto its wheels. Keep your fingers clear any time you deal with rocks.

**Use Brains Not Brawn
for Heavy Lifting**
When dealing with rocks,
work smarter, not harder.
Skidding rocks is easiest.
Rolling them is sometimes
necessary. Lifting rocks is
the last resort.

Often small rocks are needed for fill material behind crib walls, in turnpikes and cribbed staircases, and in voids in sections of trail built in talus (rock debris). Buckets and wheelbarrows are handy here. So are canvas carrying bags. If you are part of a large crew, handing rocks person-to-person often works well. Remember, it's usually not a good idea to twist your upper body while you are holding a heavy rock.

Tread Maintenance

A solid, outsloped surface is the objective of trail maintenance. Remove and scatter berm material that collects at the outside edge

of the trail. Reshape the tread and restore the outslope. Maintain the tread at the designed width. Remove all the debris that has fallen on the tread—the sticks and stones and candy wrappers. Maintenance includes removing obstacles such as protruding roots and rocks on easier trails. It also means repairing any sections that have been damaged by landslides, uprooted trees, washouts, or boggy conditions. Compact all tread and sections of backslope that were reworked.

Slough and Berms

On hillside trails, *slough* (pronounced *sluff*) is soil, rock, and debris that has moved downhill to the inside of the tread, narrowing the tread. Slough needs to be removed (figure 30). Doing so is hard work. Slough that doesn't get removed is the main reason trails "creep" downhill.

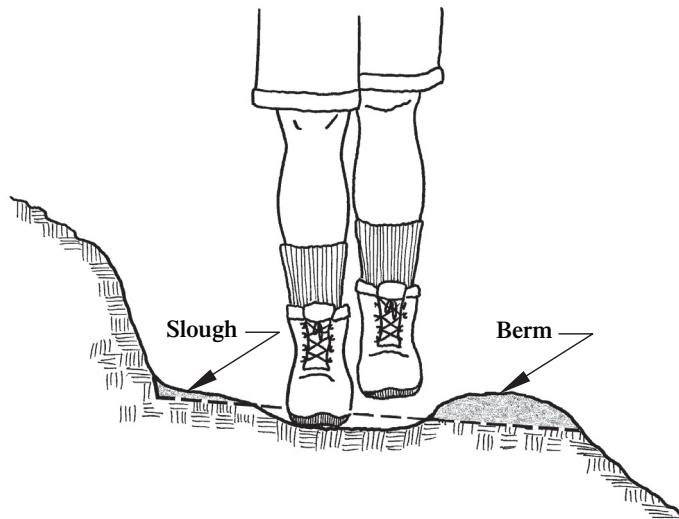


Figure 30—Remove the slough and berm, leaving the trail outsloped so water will run off.

Loosen compacted slough with a mattock or Pulaski, then remove the soil with a shovel or McLeod. Reshape the tread to restore its outslope. Avoid disturbing the entire backslope unless it is absolutely necessary to do so. Chop off the toe of the slough and blend the slope back into the hillside. Remember to compact the tread thoroughly.

Berms are made of soil that has built up on the outside of the tread, forming a barrier that prevents water from sheeting off. Berms form when water erodes trail tread that wasn't compacted during construction, depositing it on the edge of the trail. Water runs down the tread, gathering volume and soil as it goes. Berm formation is the single largest contributor to erosion of the tread. Removing berms is always the best practice.

Berms may form a false edge, especially when berms are associated with tread creep. False edge is unconsolidated material, often including significant amounts of organic material, that can't bear weight. This is probably the least stable trail feature on most trails and a major contributor to step-throughs and wrecks.

If berms persist, an insloped turn may be an option. Essentially this is a turn with a built-up berm. Insloped turns will improve trail flow and add an element of fun on off-highway vehicle and mountain bike trails. Special attention needs to be placed on creating proper drainage. This requires a high level of trail-building experience and a good understanding of waterflow.

Tread Creep

Does your contour trail display:

- Exposed bedrock or roots along the uphill side of the tread?
- Tread alignment that climbs over every anchor point and drops before climbing to the next anchor point?
- Pack bumpers (downhill trees scarred by packstock panniers)?

All three are indications that the tread surface has been eroded and compacted by travel along the outside edge. Insidious tread creep is at work. Tread creep should be stopped or the trail will eventually become very difficult or dangerous to travel (figure 31).

Figure 31—A classic case of tread creep. This trail needs help now because the tread is moving downhill.

What causes tread creep? The answer is simple. Most livestock, wheeled traffic, and some hikers have a natural tendency to travel the outside edge of sidehill trails. Sloughing makes the edge of the trail the flattest place to walk. Backslopes that are too steep may slough material onto the tread, narrowing the trail. The trail becomes too narrow. The result is that traffic travels closer to the outside edge (figure 32). Your job is to bring the trail back uphill to its original location and keep it there.

Causes of Trail Creep

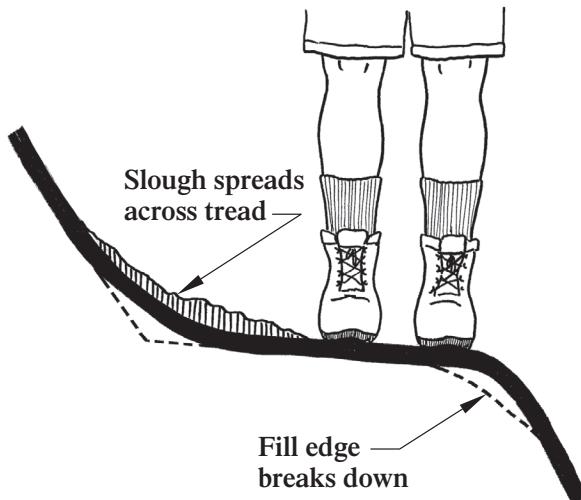


Figure 32—Tread creep at work—sloughing and soft fillslopes.

To fix tread creep, cut the backslope properly, remove slough, and reestablish the 5-percent outslope. Take advantage of large stationary objects (guide structures) to prevent animals and people from walking along the edge. Trees, the ends of logs, rocks, and stumps that are left close to the downhill edge of the trail will keep traffic walking closer to the middle.

Tread material between guide structures might creep downhill, creating a situation where the trail climbs over every tread anchor and descends again, a *daisy chain*. At the bottom of these dips, water and sediment collect. This is the weakest portion of the tread and the most prone to catastrophic failure. The tread can be so soft that packstock may punch completely through the tread (called a step-through) or bicycles and motorcycles may collapse the edge, leading to bad wrecks.

Where soil is in short supply, you may have to install a short retaining wall and haul in tread material. The tread should be benched back into the slope in the original alignment. Guide structures should be installed on the outside edge of the tread to keep traffic toward the center.

A note on guide structures: If you use a rock, be sure it is big enough that at least two-thirds of it may be buried so people or bears won't roll it away (figure 33). Guide structures should be placed at random distances so they don't act like a wall to trap water on the tread. You might need to make the trail a little wider to accommodate the guide structure.

Stabilizing Tread Creep

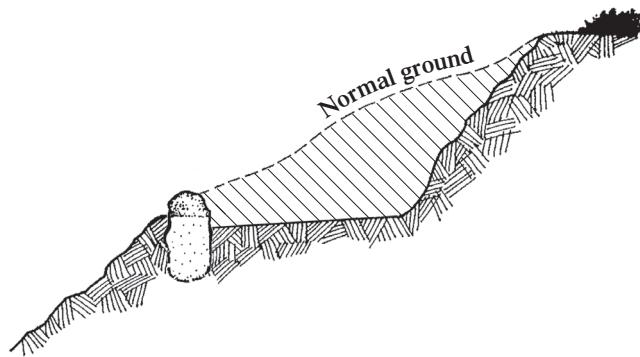
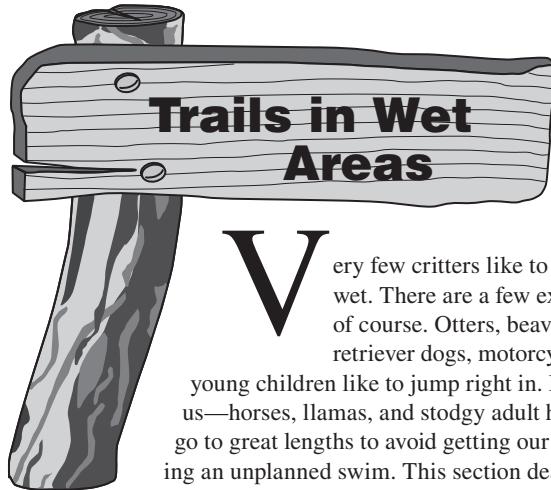



Figure 33—Guide rock properly installed to help prevent tread creep. Do not create a continuous barrier that impedes water drainage.

Very few critters like to get their feet wet. There are a few exceptions, of course. Otters, beavers, goofy retriever dogs, motorcyclists, and young children like to jump right in. But the rest of us—horses, llamas, and stodgy adult hikers—often go to great lengths to avoid getting our feet wet or taking an unplanned swim. This section deals with a range of options for getting trail traffic from one side of wet ground to the other. See “Wetland Trail Design and Construction” (Steinholtz and Vachowski 2007) for additional information.

Because nearly every technique for fixing trails in boggy areas is expensive and needs to be repeated periodically, relocating the problem section of trail should be considered first. Scouting for suitable places to relocate trails and reviewing soil maps is time well spent. The alternative route should traverse the sideslope for better drainage. Don’t reroute a problem section of trail to another boggy piece of ground. If you do, the result will be two problem trail sections instead of one.

Moving up in cost and complexity, two types of structures—turnpikes and puncheon—are commonly constructed to keep trails dry through wet or boggy areas. Using geosynthetics in combination with these techniques can result in a better tread with less fill. Rock armoring is popular in some areas where hardened trails are needed.

A trail bridge may be needed in situations where long spans will be high above the ground or for crossing streams. Bridges require special designs fitted to each type of use. Engineering approval is needed before constructing either a standard or specially designed bridge.

Boardwalks are common in some parts of the country, particularly in parts of Alaska and in the Southeast. They can range from fairly simple structures placed on boggy surfaces to elevated boardwalks over marshes or lake shores, such as those found at some interpretive centers (figure 34).

Figure 34—This boardwalk relies on pilings for support. Helical earth anchors also could be used to support the structure.

Geosynthetics

Geosynthetics are synthetic materials (usually made from hydrocarbons) that are used with soil or rock in many types of road and trail construction. Geosynthetics offer alternatives to traditional trail construction practices and can be more effective in some situations.

Geosynthetics perform three major functions: separation, reinforcement, and drainage. Geosynthetic materials include geotextiles (construction fabrics), geonets, sheet drains, and geocells. All these materials become a permanent part of the trail and must be covered with soil or rock. If the material is exposed, it can be damaged by trail users and may cause users to slip or trip.

Geotextiles (figure 35) are the most widely used geosynthetic material. Sometimes they are called construction fabrics. They are made from long-lasting synthetic fibers bonded to form a fabric that is used primarily for separation and reinforcement over wet, unstable soils. They have the tensile strength needed to support loads and can allow water, but not soil, to seep through.

Figure 35—Felt-like geotextiles are easier to work with than heat-bonded, slit-film, or woven products with a slick texture.

Geotextiles are often used when constructing turnpikes or causeways. The geotextiles separate the silty, mucky soil beneath the fabric from the mineral, coarse-grained, or granular soil placed as tread material on top of the geotextile. The importance of separation cannot be overemphasized. It takes only about 20 percent silt or clay before mineral soil takes on the characteristics of mud—and mud is certainly not

what you want for your tread surface. Most geotextiles commonly used in road construction work are suitable for trail turnpikes. The fabric should allow water to pass through, but have openings of 0.3 millimeter (0.01 inch) or smaller that silt can't pass through.

Geotextiles need to be carefully sized, trimmed, and sometimes fastened down before they are covered with fill. The fabric needs to be overlapped at joints and trimmed to fit over bedrock. The fabric must be covered with tread material.

Some geotextiles are sensitive to ultraviolet light. They decompose readily when exposed to sunlight. Always store unused geotextile in its original wrapper.

Geonets or **geonet composites** (figure 36) have a thin polyethylene drainage core that is covered on both sides with geotextile. They are used for separation, reinforcement, and drainage. Because geonets have a core plus two layers of geotextile, they provide more reinforcement than a single layer of geotextile.

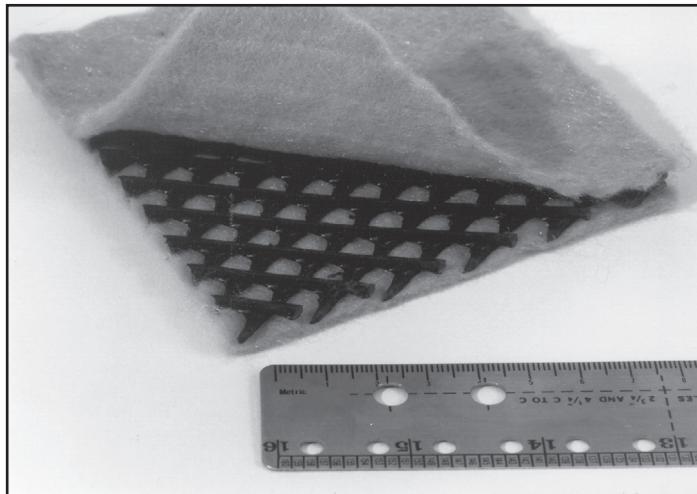


Figure 36—The net-like core of geonet allows water to drain through it.

Sheet drains are made with a drainage core and one or two layers of geotextile. Usually, the core is made of a polyethylene sheet shaped like a thin egg crate. The core provides an impermeable barrier unless it has been perforated by the manufacturer. When used under the trail tread material, sheet drains provide separation, reinforcement, and drainage. Because they have greater bending strength than geotextiles or geonets, less tread fill may be needed.

Sheet drains or geonets can be used as drainage cutoff walls (figure 37). If the trail section is on a sideslope where subsurface water saturates the uphill side of the trail, a cutoff wall can be constructed to intercept surface and subsurface moisture, helping to drain and stabilize that section of trail.

Drainage Cutoff Walls

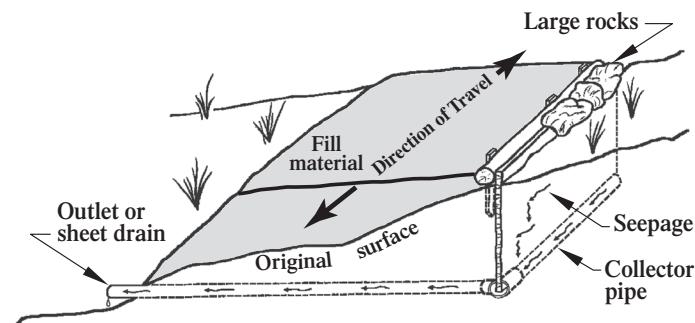


Figure 37—A sheet drain or geonet can be used to intercept seepage.

Geocells usually are made from polyethylene strips bonded to form a honeycomb structure. Each cell is backfilled and compacted (figure 38). Geocells are good for reinforcement, reduce the amount of fill material required, and help hold the fill in place. Geocell usually has geotextile underneath it for separation from saturated soils. The grids need to be covered and compacted with at least 76 millimeters (3 inches) of tread material so they will never be exposed. Exposed geocells present a substantial hazard to foot traffic and vehicles, which will lose traction.

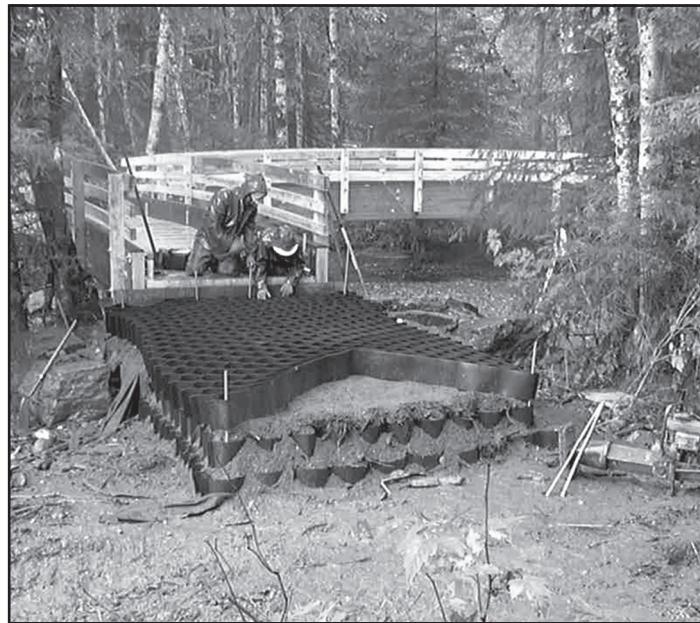


Figure 38—Geocells are good for tread reinforcement and help hold fill in place.

Rock Underdrains

Rock underdrains (often called *French drains*) are ditches filled with gravel. They can be used to drain a spring or seep running across the trail. Wrap the gravel with geotextile to help prevent silt from clogging the rock voids. Start with larger pieces of rock and gravel at the bottom, topping off with smaller aggregate (figure 39). Finish the drain with 150 millimeters (6 inches) of tread material so that the surface matches the rest of the trail.

Rock Underdrain or French Drain

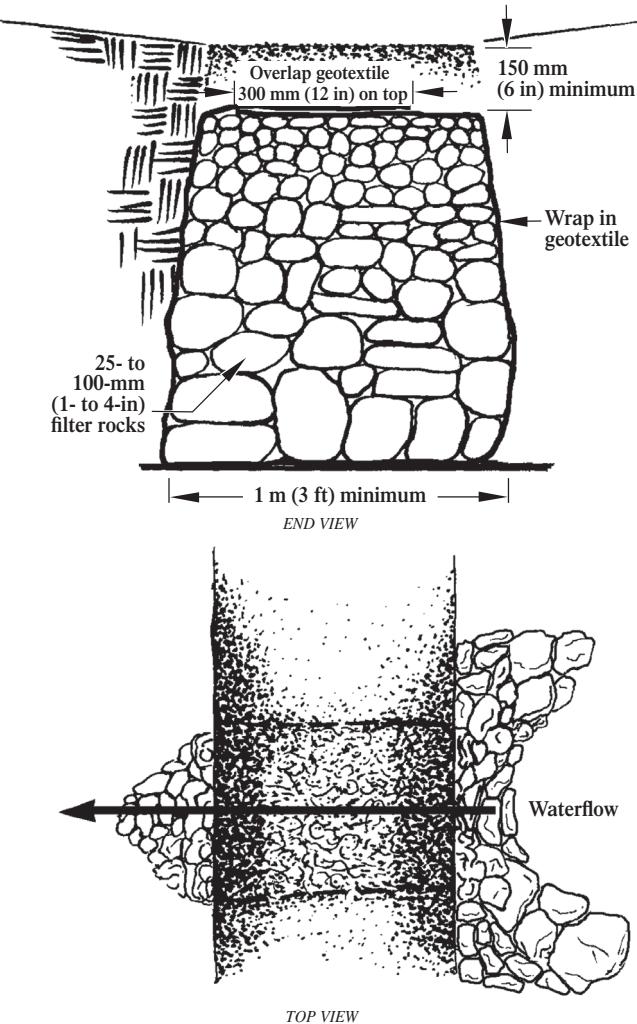


Figure 39—Wrapping rock underdrains with geotextile helps prevent them from clogging. Rock underdrains are used to drain low-flow springs and seeps.

Turnpikes

Turnpikes elevate a trail above wet ground. The technique uses fill material from parallel side ditches and from areas offsite to build up the trail base so it is higher than the water table. Turnpike construction can provide a stable trail base in areas with a high water table and fairly well- to well-drained soils. Turnpikes are practical for trail grades up to 10 percent (figure 40).

Turnpike With Leadoff Ditch

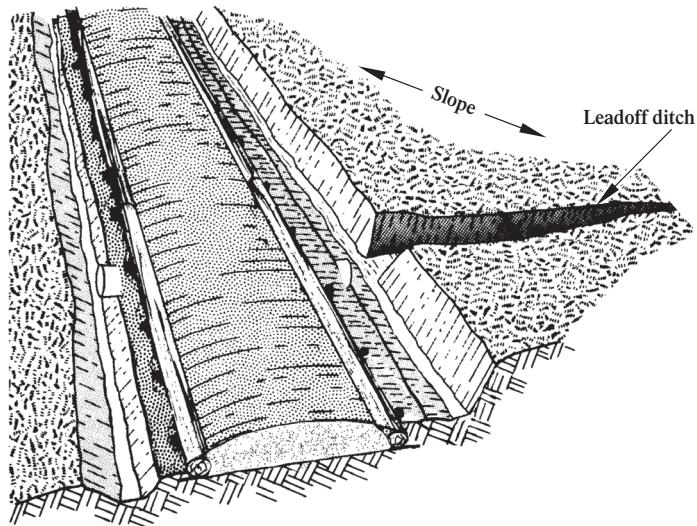


Figure 40—Turnpikes raise a trail above wet ground.

A turnpike should be used primarily in flat areas with wet or boggy ground that have up to 20-percent sideslope. Turnpikes are easier and cheaper to build than puncheon and may last longer.

Finding Fill
Often you need fill material to construct turnpikes. Look for a site that has suitable tread material close to the work site. This is called a borrow pit.

Good places for a borrow pit include:

- Creek bottoms that are replenished by storms and seasonal waterflow
- Bases of slopes or cliffs where heavy runoff or gravity deposits sand and gravel

Don't destroy aquatic or riparian habitat with your pit. Rehabilitate the pit when you're done. Grade the pit out to natural contours with topsoil and debris, then revegetate.

Begin your turnpike by clearing the site wide enough for the trail tread plus a ditch and retainer log or rocks on either side of the trail tread. Rocks, stumps, and stobs that could rip geotextiles or that protrude above the turnpike tread should be removed or at least cut below the final base grade.

Ditch both sides of the trail to lower the water table. Install geotextile or other geosynthetic materials and retainer rocks or logs. Geotextile and geocell should go under any retainer rocks or logs (figure 41). Use high-quality tread material as fill above the geotextile.

Firm mineral soil, coarse-grained soils or granular material, or small, well-graded angular rocks are needed for fill. Often gravel or other well-drained material must

be hauled in to surface the trail tread. If good soil is excavated from the ditch, it can be used as fill. Fill the trail until the crown of the trail tread is 50 millimeters (2 inches) or has a minimum 2-percent grade above the retainers. It doesn't hurt for the fill to be a little too high to begin with, because it will settle.

Geotextile Placement

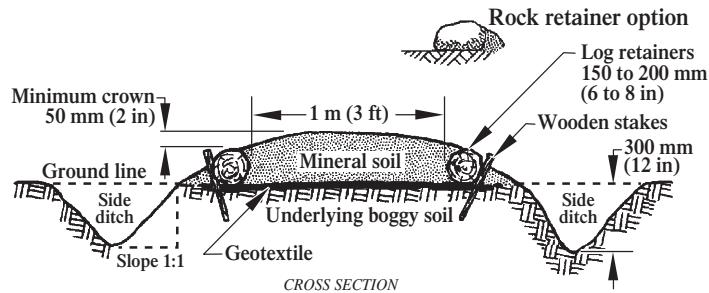


Figure 41—Place geotextile under the retainer logs or rocks before staking the geotextile in place.

Construct a dip or a drainage structure at each end of the turnpike where necessary to keep water from flowing onto the structure. Keep the approaches as straight as possible coming onto a turnpike, to minimize the chance that stock or motorbike users will cut the corners and end up in the ditches. Turnpike maintenance, especially recrowning, is particularly important the first year after construction; the soil will have settled then. Make sure the ditches are cleaned out and are deep enough to drain the turnpike (figure 42).

Figure 42—Turnpike maintenance includes recrowning the tread, cleaning out the ditches, and making sure the ditches are deep enough.

An alternative method, one that not only provides separation between good fill and clay but also keeps a layer of soil drier than the muck beneath, is called encapsulation, or the *sausage encapsulation technique* (figure 43). Excavate 250 to 300 millimeters (10 to 12 inches) of muck from the middle of the turnpike. Lay down a roll of geotextile the length of the turnpike. The geotextile should be wide enough to fold back over the top with a 300-millimeter (1-foot) overlap. Place 150 millimeters (6 inches) of good fill, or even rocks, on top of the single layer of geotextile, then fold the geotextile back over the top and continue to fill with tread material. Rocks or logs can be used for retainers. Rocks last longer.

Sausage or Encapsulation Technique

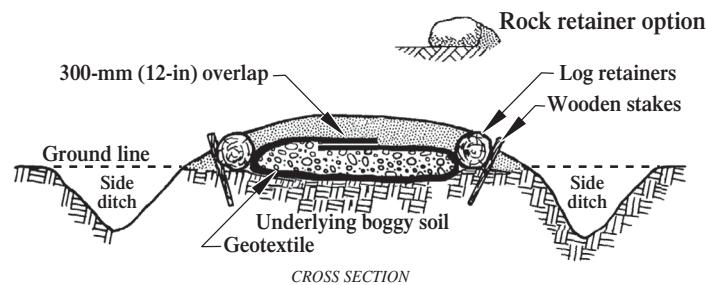


Figure 43—Sausage encapsulation is another way to raise a trail above wet areas.

If you use logs, they should be at least 150 millimeters (6 inches) in diameter and peeled. Lay retainer logs in one continuous row along each edge of the trail tread. The logs can be joined by notching them (figure 44). In some species, notching may cause the logs to rot faster. Anchor the logs with stakes (figure 45) or, better yet, large rocks along the outside. Anchors are not needed on the inside, because the fill and surfacing will hold the retainer logs.

The most important considerations are to keep the water level below the trail base and carry the water under and away from the trail at frequent intervals.

Notched Retainer Log

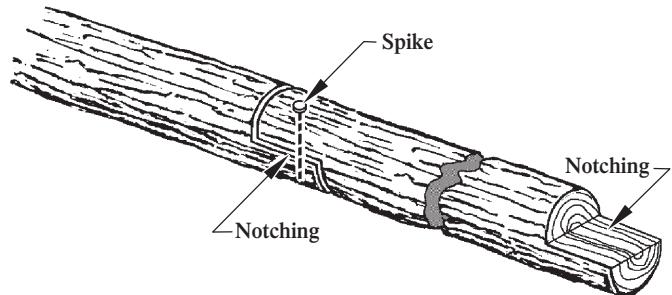


Figure 44—Retainer logs are joined with spikes.

Sapling Stake

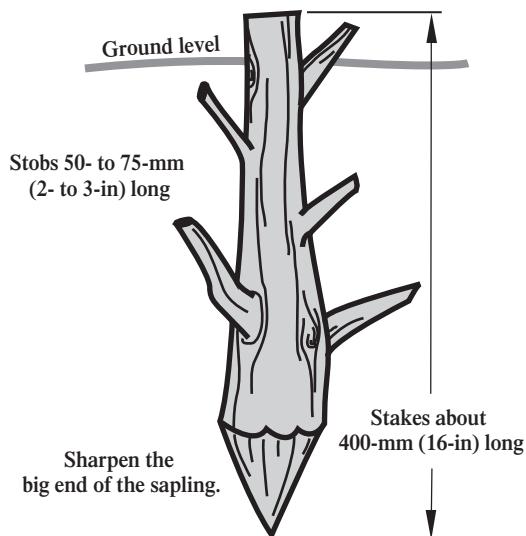


Figure 45—Try this old Alaska trick if your stakes tend to work up out of boggy ground.

Turnpikes Without Ditches

A turnpike without ditches is sometimes called a *causeway*. These structures are viable alternatives where a hardened tread is needed and groundwater saturation is not a problem. Turnpikes without ditches have been used successfully throughout the Sierra Nevada and elsewhere to create an elevated, hardened tread across seasonally wet alpine meadows. The surface can also be reinforced with large stones, called armoring, paving, or flagstone. Often multiple parallel paths are restored and replaced with a single causeway (figure 46). These structures can create less environmental impact than turnpikes with ditches because they do not lower the water table. The risk is that in highly saturated soils the turnpike without ditches could sink into the ground, a problem that geotextile can help prevent.

Turnpikes Without Ditches

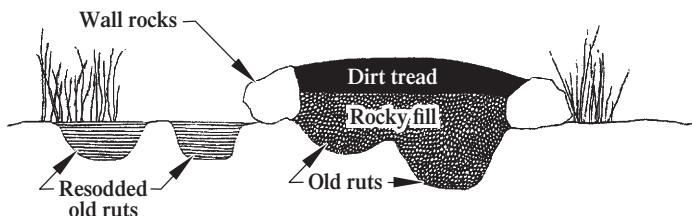


Figure 46—Turnpikes without ditches, sometimes called causeways, create an elevated, hardened tread across seasonally wet areas and can replace multiple parallel paths.

Puncheon

When the ground is so wet the trail cannot be graded and there's no way to drain the trail, use puncheon.

Puncheon is a wooden walkway used to cross bogs or deep muskeg, to bridge boulder fields, or to cross small streams (figure 47). It can be used where uneven terrain or lack of tread material makes turnpike construction impractical. Puncheon is also preferred over turnpikes where firm, mineral soil cannot be easily reached. Puncheon can be supported on muddy surfaces better than a turnpike, which requires effective drainage.

Puncheon

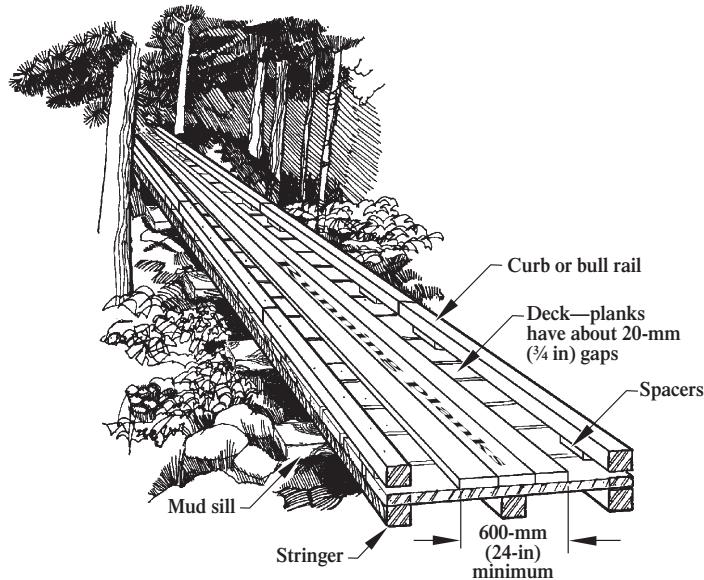


Figure 47—Puncheon is a wooden walkway used when trails cross bogs, deep muskeg, large boulder fields, or small streams.

Puncheon resembles a short version of the familiar log stringer trail bridge. It consists of a deck or flooring made of sawed, treated timber or native logs placed on stringers to elevate the trail across wet areas that are not easy to drain. Puncheon that is slightly elevated is termed standard puncheon (figure 48).

Figure 48—Standard puncheon is slightly elevated above the ground.

Here's how to build puncheon. First of all, the entire structure must extend to solid mineral soil so soft spots do not develop at either end. Approaches should be straight for at least 3 meters (10 feet) coming up to the puncheon. Any curves either approaching or on the puncheon add to the risk of slipping, especially for stock, mountain bike riders, and motorcycle riders.

To begin construction, install mud sills to support the stringers. Mud sills can be made of native logs, treated posts, short treated planks, or precast concrete parking lot wheel blocks. The mud sills are laid in trenches at both ends of the area to be bridged at intervals of 1.8 to 3 meters (6 to 10 feet, figure 49). They are about two-thirds buried in firm ground. If firm footing is not available, use rock and fill to solidify the bottom of the trench, increase the length of the sill log to give it better flotation, or use more sills for enough floatation. Enclosing rock and fill in geotextile minimizes the amount of rock and fill required. For stability, especially in boggy terrain, the mud sills should be as long as practical, up to 2.5 meters (8 feet) long.

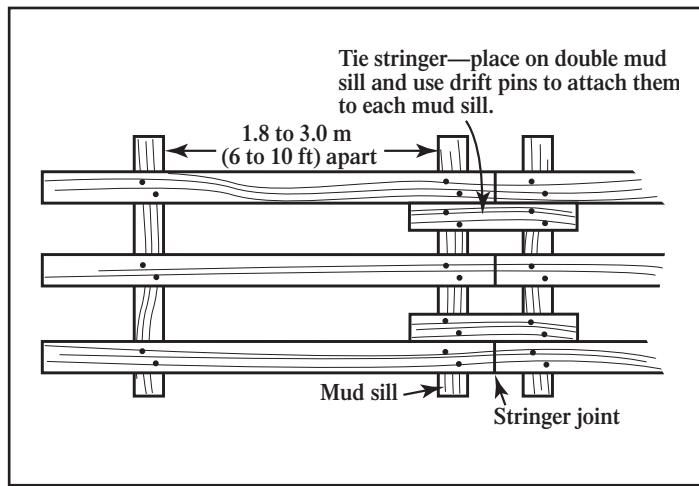


Figure 49—Proper layout of puncheon, showing mud sills and stringers.

Stringers made from 200-millimeter- (8-inch-) diameter peeled logs or treated timbers are set on top of the mud sills. They should be at least 3 meters (10 feet) long and about the same length and diameter. Stringers also need to be level with each other so the surface of the puncheon will be level when the decking is added. Two stringers are adequate for hiking trails, but for heavier traffic, such as packstock, three stringers are recommended.

Notch the mud sills, if necessary, to stabilize the stringers and to even out the top surfaces (figure 50). To hold the stringers in place, toenail spikes through the stringers to the mud sills or drive No. 4 rebar through holes in the stringers.

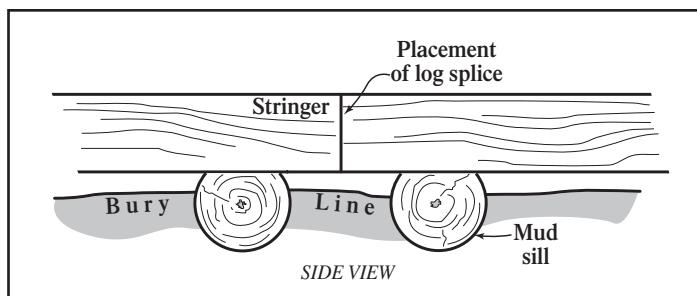


Figure 50—When using logs, notch the mud sill—not the stringer. Don't notch the sill more than one third of its diameter.

Next comes the decking. Decking pieces are fastened perpendicular to the stringers. The decking thickness will vary, depending on the loads the structure will need to support. Decking can be as short as 460 millimeters (18 inches) for a limited-duty puncheon for hikers. For stock or ATV use, decking should be 1.2 to 1.5 meters (4 to 5 feet) wide.

Do not spike decking to the center stringer, if you have one, because center spikes may work themselves up and become obstacles. Leave at least a 20-millimeter (3/4-inch) gap between decking pieces to allow water to run off (figure 51). Decking should be placed with tree growth rings curving down. This encourages water to run off rather than soak in and helps to prevent cupping.

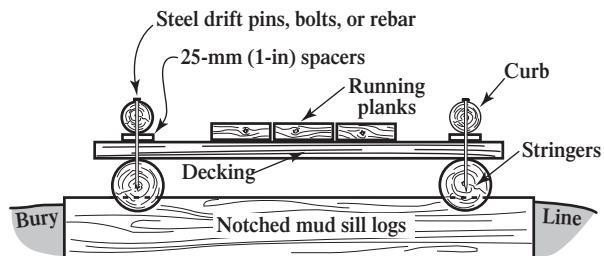


Figure 51—Place the stringers far enough apart to support the full width of the decking.

Running planks are often added down the center for stock to walk on. Often the running planks are untreated because horseshoes wear down the plank before wood has a chance to rot. Do not leave gaps between running planks because they can trap mountain bike or motorcycle wheels.

Curbs, also called bull rails, should be placed along each side of the puncheon for the full length of the structure to keep traffic in the center. To provide for drainage, nail spacers between the curb logs and the decking.

Finally, a bulkhead (sometimes called a backing plate) needs to be put at each end of the structure to keep the stringers from contacting the soil (figure 52). If the plate stays in place, do not spike it to the ends of the stringers. Spiking causes the stringers to rot faster.

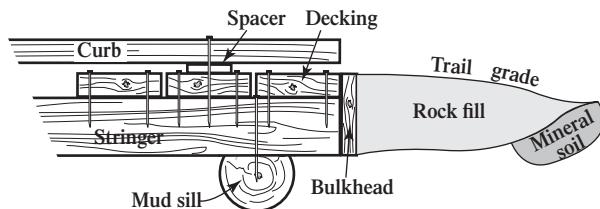


Figure 52—Place a bulkhead or backing plate at each end of the puncheon. Approaches should have a rising grade so water will not run onto the structure.

Subsurface Puncheon

Subsurface puncheon is used in standing water or bogs. It is constructed with mud sills, stringers, and decking flush with or under the wetland's surface. This design depends on continual water saturation for preservation (figure 53). Moisture, air, and favorable temperatures are needed for wood to rot. Remove any one of these and wood won't rot. A good rule for reducing rot is to keep the structure continually dry or continually wet. Totally saturated wood will not rot because no air is present. Cover the surface between the curb logs with a layer of gravel, wood chips, or soil to help keep everything wet (figure 54).

Subsurface Puncheon With Covered Tread Surfacing

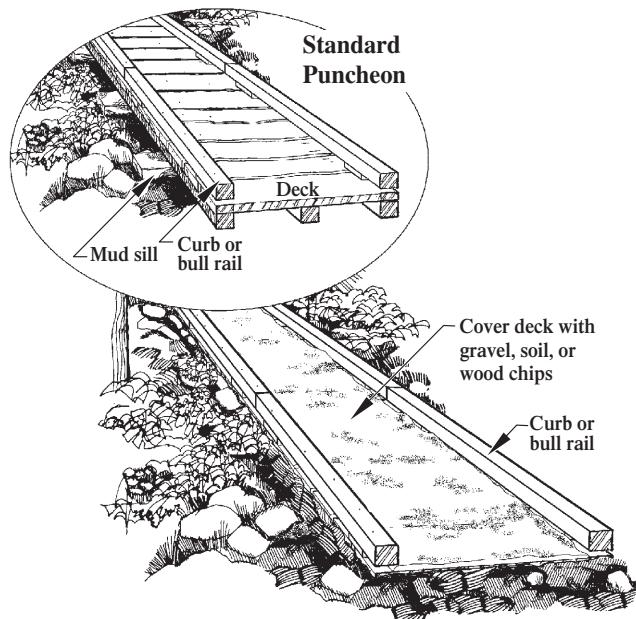


Figure 53—Cover the tread surface between the curb rails with gravel, wood chips, or soil to keep everything wet, preventing decay.

Figure 54—Subsurface puncheon covered with soil and rock.

Corduroy

Corduroy is basically a primitive type of puncheon. It consists of three or more native logs laid on the ground as stringers with logs laid side-by-side across them and nailed in place (figure 55). Corduroy should always be buried, with only the side rails exposed. Corduroy is notorious for decaying quickly and consuming large amounts of material. It should be used only as a temporary measure and is not recommended for new construction. The use of corduroy may indicate that your trail has been poorly sited.

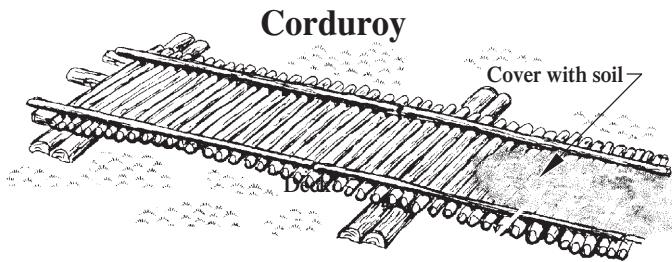
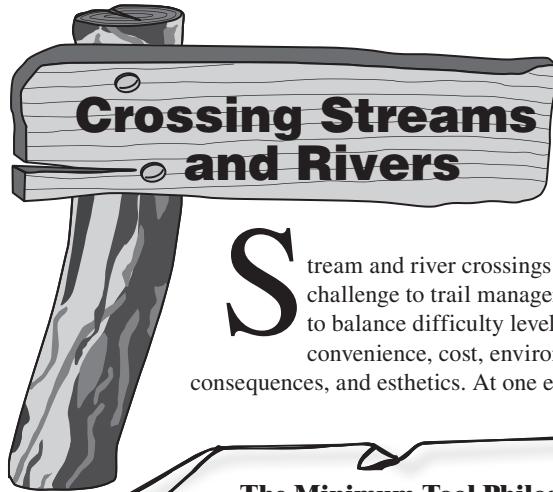



Figure 55—Corduroy should be considered a temporary fix until a more permanent structure can be installed.

Stream and river crossings present a challenge to trail managers who need to balance difficulty levels, safety, convenience, cost, environmental consequences, and esthetics. At one end of the use

The Minimum Tool Philosophy

The minimum tool philosophy suggests that we get the job done with the least long-term impact while still meeting management objectives. A few minimum tool questions for crossings are:

- Do we really need a bridge here? Do we really need to cross here early in the spring?
- Will someone be killed or injured if we don't provide an easier crossing?
- Is this really the best place to cross this stream?
- What alternatives do we have to cross this stream, including not crossing it at all?
- Can we afford this crossing?
- What are the environmental and social consequences of a given type of crossing here?
- Can we commit to long-term inspections and maintenance?
- Who will really care if we don't build (or replace) a bridge?

It's a wonderful thing to keep one's feet dry, but keeping those feet dry in the backcountry is expensive.

spectrum, a bridge can allow people with disabilities, toddlers, and users who are new to the outdoors to experience the trail with little risk. But bridges are expensive. Wilderness visitors who expect a challenge may prefer a shallow stream ford. During high water, these folks may opt for a tightrope walk across a fallen log. Each kind of water crossing has consequences for the recreation experience and the lands being accessed. Choose wisely from the spectrum of options before committing present and future resources to any given crossing.

Shallow Stream Fords

A shallow stream ford is a consciously constructed crossing that will last for decades with a minimum of maintenance (barring major floods) and will provide a relatively low challenge to users.

The idea behind a shallow stream ford is to provide solid footing at a consistent depth from one bank to the other (figure 56). Most fords are designed to be used just during low to moderate flows. A ford for hikers and packstock, such as llamas and pack goats, should be no deeper than 400 to 600 millimeters (16 to 24 inches, about knee high) during most of the use season. A horse ford shouldn't be deeper than 1 meter (39 inches).

Fords should be located in wider, shallower portions of the stream. The approaches should climb a short distance above the typical high water line so that water isn't channeled down the tread (figure 57). Avoid locations where the stream turns, because the water will undercut approaches on the outside of a turn.

The tread in the ford should be level, ideally made of rock or medium-sized gravel that provides solid footing. The plan is to even out the waterflow through the ford so the gravel-sized material isn't washed away, leaving only cobble or boulders. Make sure you don't block passage for fish and other aquatic organisms.

Shallow Stream Ford

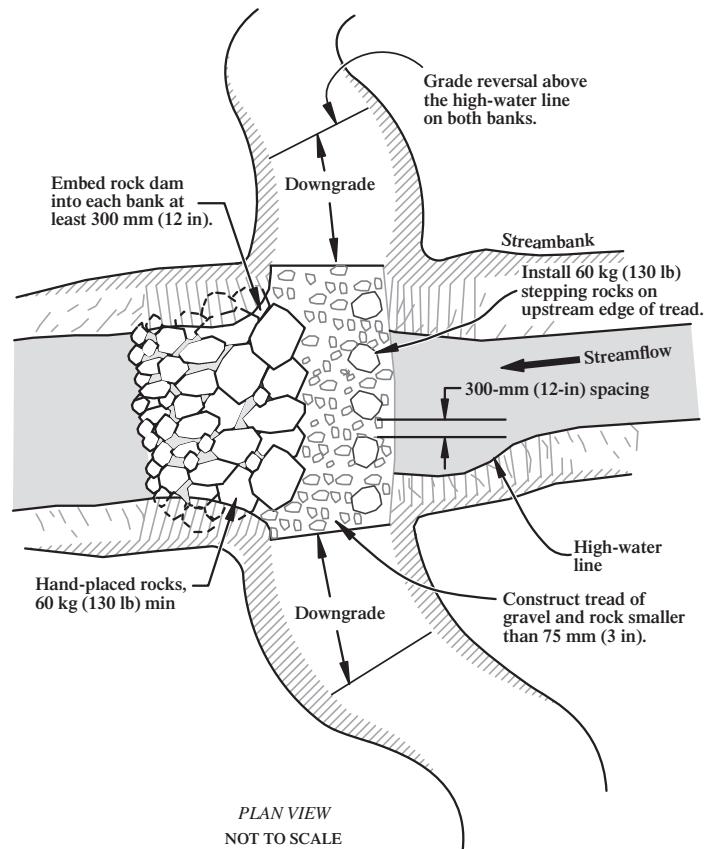


Figure 56—Build fords when the water is low. Place stepping stones for hikers.

Figure 57—Fords should be established in wider, shallower portions of a stream. Approaches should climb a short distance above the high-water line.

Several rows of stepping stones or rocks can be placed upstream from the tread to begin evening out the flow and slowing the water before it enters the ford. Be sure these rows of rocks are not too close to the trail or water flowing over them might scour the tread.

On trails receiving motorized use, rocks or concrete pavers (figure 58) can strengthen the trail tread and stream approaches for a solid crossing.

Well-constructed shallow stream fords are almost maintenance free. Watch for deep spots developing in the crossing. Floods or seasonal runoff can wash away the approaches. Debris can be trapped in the line of stepping stones, altering flow characteristics. Approaches can erode or turn into boggy traps. Maintenance consists of retaining or restoring an even, shallow flow and solid footing. When working in streams, consult the land manager and a fishery biologist to find out what you can and cannot do.

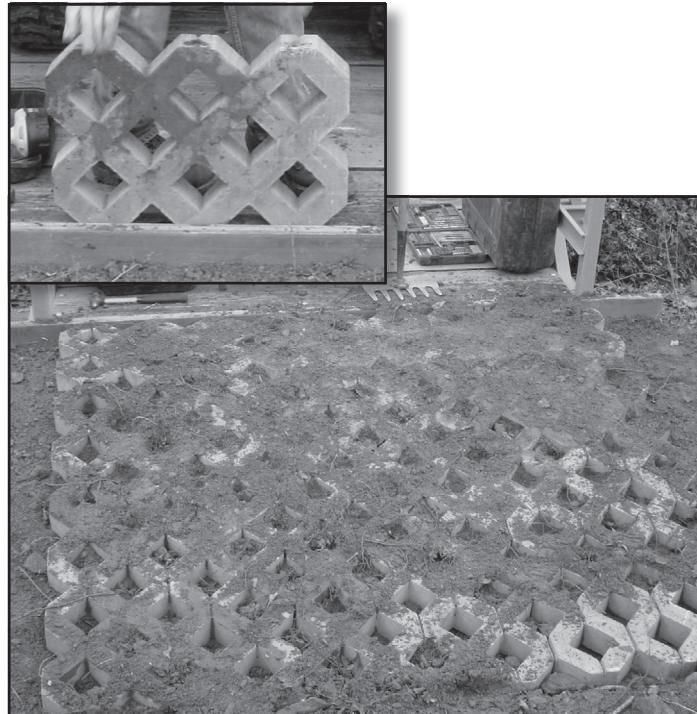


Figure 58—Concrete pavers are good for hardening trails and approaches for motorized use. The voids need to be filled.

Culverts

Culverts are probably the best way to move small volumes of water under a trail (figure 59). The tread extends over the culvert without interruption. Metal or plastic culverts can be installed easily, or culverts can be constructed out of rock.

Figure 59—Culverts are a good option for moving small volumes of water under a trail.

To install metal or plastic culverts, dig a ditch across the trail as wide as the culvert and somewhat deeper. Bed the culvert in native soil shaped to fit it. There needs to be enough drop (about 3 percent) from one side of the trail to the other to keep water flowing through the culvert without dropping sediment. The culvert needs to be covered with 150 millimeters (6 inches) or more of fill. Cut the culvert a little longer than the trail's width, and build a rock facing around each end to shield the culvert from view and prevent it from washing loose. Often a rock-reinforced spillway will reduce headcutting and washouts on the downhill side of the culvert.

The local trail manager may have definite preferences for metal, plastic, wood, or rock culverts. Synthetic materials may be taboo in wilderness. Plastic is lighter than metal, easy to cut, and less noticeable. Aluminum or plastic are preferred over steel in acidic soils. Painting the ends of aluminum or steel culverts helps camouflage them. A culvert should be big enough to handle maximum storm runoff and allow it to be cleaned easily. Usually this means the culvert should be at least 260 millimeters (9 inches) in diameter.

Rock culverts offer workers a chance to display some real trail building skills (figure 60). Begin by laying large, flat stones in a deep trench to form the bottom of the culvert. In some installations, these rocks may not be necessary. Then install large, well-matched stones along either side of the trench. Finally, span the side rocks with large, flat rocks placed tightly together so they can withstand the expected trail use. Cover the top rocks with tread material to hide and protect the culvert. These culverts need to be large enough to clean out easily. The rocks should not wiggle.

Rock Culvert

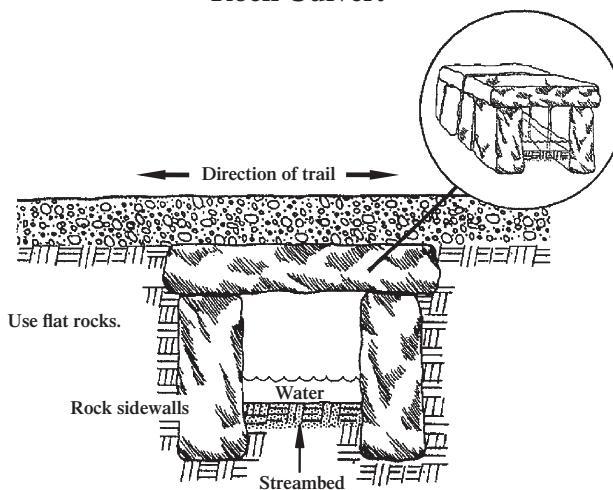


Figure 60—Rock culverts may have stones laid along the culvert's bottom. The perfect rocks shown here are seldom found in nature.

Water flowing toward a culvert often carries a lot of silt and debris. If the water slows as it goes into the culvert, the silt and debris may settle out, clogging the culvert. A good way to help prevent this problem is by constructing a **settling basin** at the inlet to the culvert (figure 61). This basin should be at least 300 millimeters (1 foot) deeper than the base of the culvert. Sediment will settle out in the basin, where it is much easier to shovel away, rather than inside the culvert.

Rock Culvert

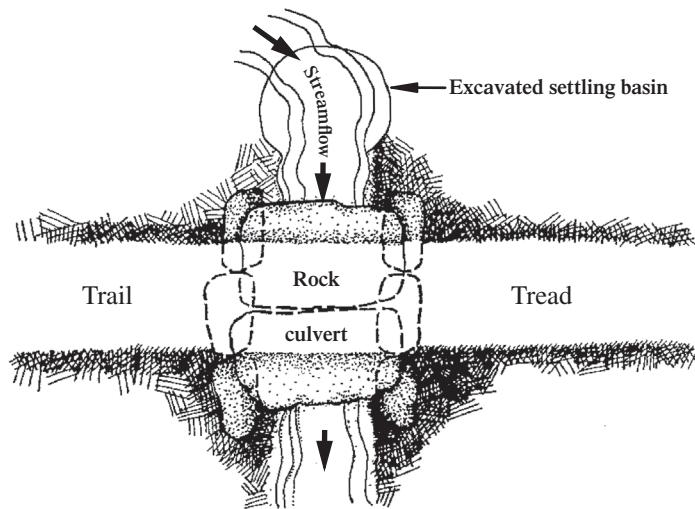


Figure 61—Settling basins help prevent culverts from clogging with silt and debris.

Bridges

Trail bridges range from a simple foot bridge with a handrail (figure 62) to multiple span, suspended, and truss structures. In the Forest Service, handrails are required on all bridges unless an analysis (design warrant) shows that the risk of falling off the bridge is minimal or the trail itself presents a higher risk. All bridges require a curb.

Design Approval
On national forests, all bridges require design approval from engineering before being constructed. Some regions have standardized, approved designs for simple bridges.

Figure 62—A simple footbridge with a handrail.

On hiking trails, log footbridges (figure 63) can be used to cross streams or to provide access during periods of high runoff. Log footbridges consist of a log, sills, and bulkheads. The log needs drainage and airspace to keep it from rotting. The foot log should be level and well anchored. Notch the sill—not the log—when leveling the foot log. The foot log should be no less than 457 millimeters (18 inches) in diameter. The top surface should be hewed to provide a walking surface that is at least 250 millimeters (10 inches) wide. Don't let the log or rails sit on the bare ground. Remove all bark from logs and poles.

If the foot log is associated with a shallow stream ford, be sure to position the log upstream or well downstream of the ford. Logs immediately below the crossing can trap travelers who lose their footing in the ford.

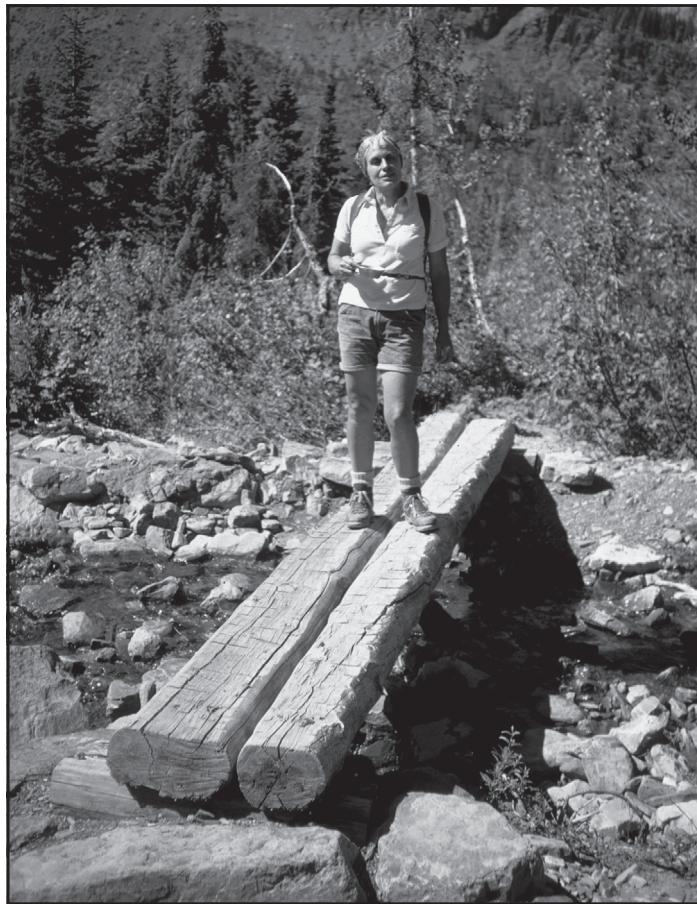


Figure 63—A log footbridge. The sill can be notched to accommodate the logs, but not vice versa. Photo has been digitally altered.

Choosing the materials for a bridge is not a simple process. Even the use of native material for a simple foot log has consequences. For example, most untreated logs of a durable wood (like coastal Douglas-fir) have a useful life of less than 20 years. Yet it may take 100 years

Handrails

In the Forest Service, handrails are required unless an analysis (design warrant) shows they are not needed. If you have handrails, construct them according to plan. Improperly constructed handrails are a big liability, because they probably will not be strong enough.

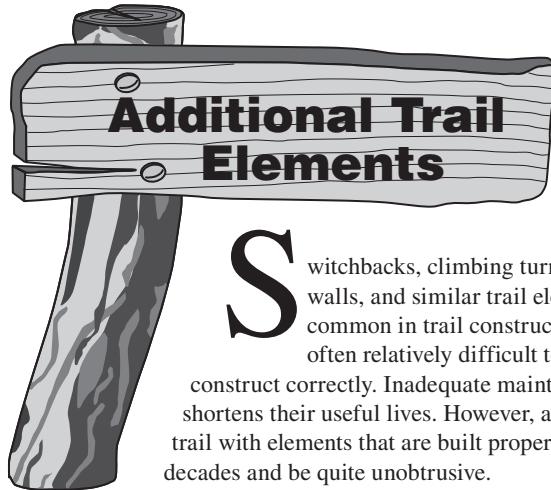
for a log to grow big enough to support visitor traffic and winter snow loads. The typical bridge has three to four stringers. Multiply this replacement-to-growth ratio by several replacement cycles and you can see how it's possible to create a slow-motion clearcut around a bridge site.

Often, materials are imported to avoid the problem of "clearcuts" near the bridge. Pressure-treated wood, metal, concrete, wood laminates, and even fiber-reinforced polymers are being used in bridges. Many of these materials must be trucked or flown to a bridge site and the old materials must be hauled out.

All this is really expensive. Yet the cost of transporting durable materials may be less than the cost of frequently rebuilding structures made with native materials. It's possible to mix-and-match steel or other "unnatural but hidden" components with wood facing and decking to achieve a natural appearance.

Unless your bridge is preassembled and flown right onto a prepared set of abutments, you'll end up moving heavy materials around the bridge site. Be careful not to allow winch guylines and logs to scar trees and disturb the ground. Damage done in a moment can last for decades.

Other types of trail bridges include multiple-span, suspended, and truss structures (figure 64). A two-plank-wide suspended footbridge with cable handrails is more complex than it looks. Midstream piers for multiple span structures need to be designed by qualified engineers to support the design loads and to withstand the expected flood events. It does no one any good to win the National Primitive Skills Award for building a gigantic bridge by hand—only to have it fail a year later because of a design or construction oversight.


Figure 64—A suspension trail bridge typical of the Northern Rockies.

Bridges are expensive, so it makes sense to take good care of them. Check foot logs and bridges annually for problems. Loose decking, planking, curbs, or handrails should be repaired as soon as possible. Clean debris and organic material from all exposed wood surfaces on the bridge or supporting structures. Structural members should be checked for shifting, loose, or missing spikes or bolts. Approaches need to be well drained so water does not run onto the bridge.

Report any of the following problems to a qualified bridge inspector who can determine whether the bridge should remain open to traffic: rotten wood; bent, broken, or disconnected steel members; large checks, splits, crushed areas, or insect damage in wood members; permanent sag or excessive deflection; erosion around abutments; broken concrete; concrete with cracks larger than 3 millimeters ($\frac{1}{8}$ inch); or exposed rebar.

The Forest Service requires all bridge structures to be inspected by a certified bridge inspector at least every 5 years.

A good online resource for more information is MTDC's "Trail Bridge Catalog" (Eriksson 2000).

Switchbacks, climbing turns, retaining walls, and similar trail elements are common in trail construction. They are often relatively difficult to design and construct correctly. Inadequate maintenance greatly shortens their useful lives. However, a well-designed trail with elements that are built properly can last for decades and be quite unobtrusive.

The best way to learn how to build trail elements is to seek someone who has a reputation for designing and building well-thought-out switchbacks, climbing turns, or walls. Have that expert conduct a seminar for your crew or actually participate in the construction of a trail you're working on.

Switchbacks and climbing turns are used to reverse the direction of travel on hillsides and to gain elevation quickly (figure 65). What is the difference between the two? A *climbing turn* is a reversal in direction that maintains the existing grade going through the turn without a constructed landing. Climbing turns have a wider turn radius and are used on gentle slopes, typically 15 percent or less. Ideally, 7-percent sideslopes are best.

A *switchback* is also a reversal in direction, but it has a relatively level constructed landing. Switchbacks are used on steeper terrain, usually steeper than 15 percent. Switchback turns have pretty tight corners because of the steeper grades. Usually, special treatments such as approaches, barriers, and drainages need to be considered. Both of these turns take skill to locate. Choosing when to use each one is not always easy.

Switchbacks and Climbing Turns

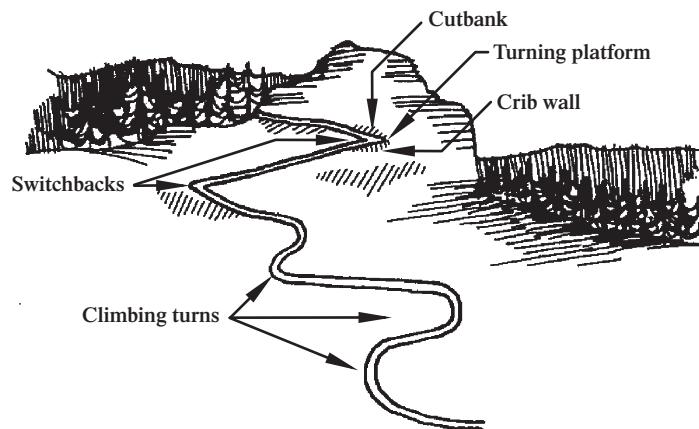


Figure 65—Climbing turns should be built on gentler sideslopes, usually 15 percent or less. Ideally, 7-percent sideslopes are best.

Understanding user psychology (human or animal) is more important to the success of climbing turns and switchbacks than to the success of any other trail element. The turns must be easier, more obvious, and more convenient than the alternatives. Climbing turns work best when terrain or vegetation screens the view of travelers coming down the upper approach toward the turn. Avoid building sets of these turns on open hillsides unless the terrain is very steep. It's usually best not to build turns, or the connecting legs of a series of turns, on or across a ridge. The local critters have trav-

Don't Overdo It

Keep in mind the minimum tool philosophy and build only as many trail elements as you absolutely need to reach your goal.

Plan carefully to avoid impassable or very difficult terrain, reducing the need for switchbacks and climbing turns.

eled directly up and down these ridges since the last ice age. They are not going to understand why you are building low hurdles in their path, and they will not be forced onto your trail and turns.

Climbing Turns

Climbing turns are the trail element most often constructed inappropriately. The usual problem is that a climbing turn is built (or attempted) on steep terrain where a switchback is needed. A climbing turn is built on the slope surface, and where it turns, it climbs at the same rate as the slope itself. Climbing turns work best when built on slopes of 15 percent or less.

The advantages of climbing turns in appropriate terrain is that a wider radius turn of 4 to 6 meters (13 to 20 feet) is relatively easy to construct (figure 66). Trails that serve off-highway-vehicle traffic often use insloped, or banked turns so that riders can keep up enough speed for

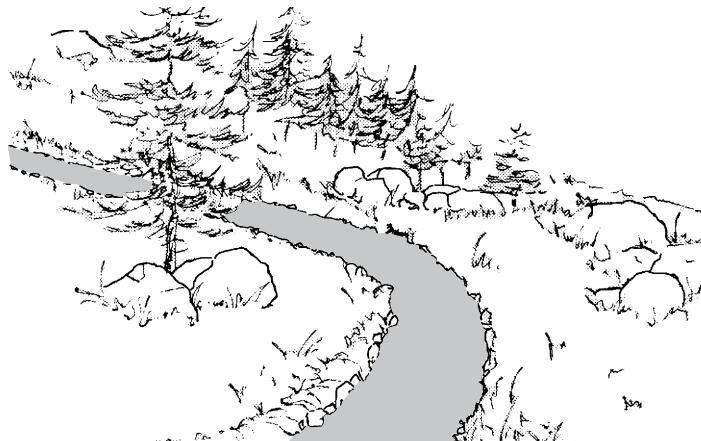


Figure 66—Climbing turns continue the climb through the turn. They can be insloped or outsloped. Add grade reversals at both approaches to keep water off the turn.

control. Climbing turns are also easier than switchbacks for packstock and bikes to negotiate (figure 67). Climbing turns are usually less expensive than switchbacks because much less excavation is required and fill is not used.

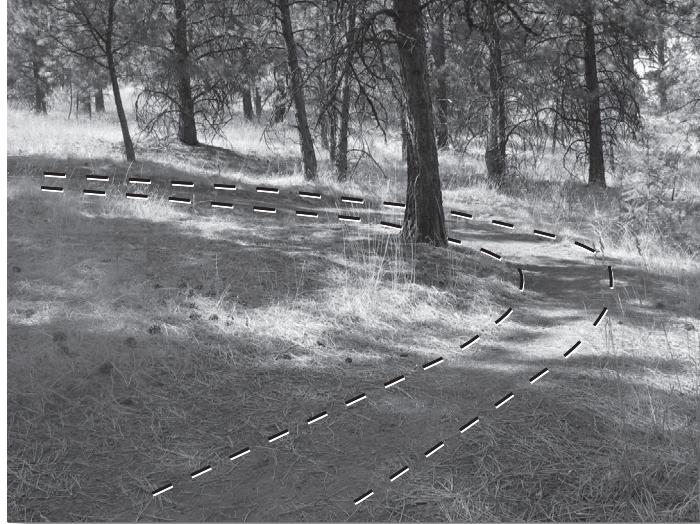


Figure 67—Climbing turns are easier for packstock and cyclists to negotiate than switchbacks.

The tread at each end of the turn should be full-bench construction, matching that of the approaches. As the turn reaches the fall line, less material will be excavated. In the turn, the tread should not require excavation other than that needed to reach mineral soil.

To prevent shortcircuiting, wrap the turn around natural obstacles or place guide structures along the inside edge of the turn. The psychologically perfect place to build climbing turns is through dense brush or dog-hair thickets of trees. Always design grade reversals into both of the approaches to keep water off the turn.

Switchbacks

Switchbacks are used in steep terrain (figure 68). Suitable terrain for a switchback becomes harder to locate and maintenance costs increase as the sideslope becomes steeper. Sideslopes from 15 to 45 percent are preferred locations for switchbacks. Although switchbacks can be constructed on sideslopes of up to 55 percent, retaining structures are needed on such steep slopes.

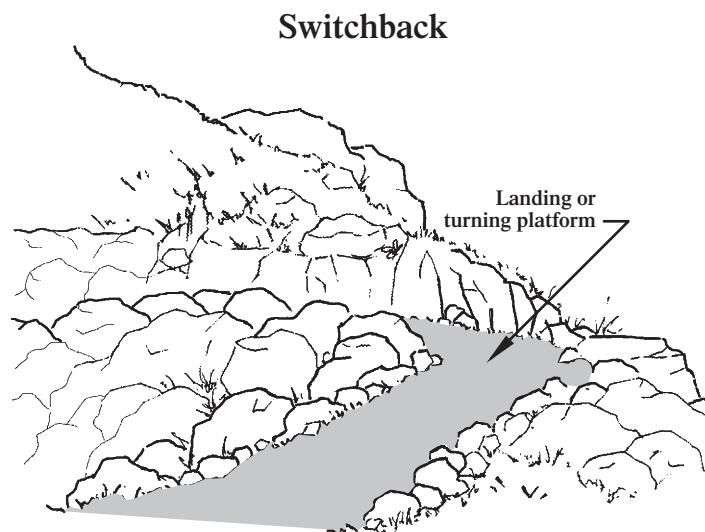


Figure 68—A switchback with a turning platform.

Switchback turns are harder to build correctly than climbing turns, but they keep tread stable on steeper terrain. Most switchbacks are constructed to a much lower standard than is needed. The key to successful switchback construction is adequate excavation, using appropriate structures to hold the fill in place, and building psychologically sound approaches.

Look for natural platforms when you are scouting for possible switchback locations. Use these platforms as control points when locating the connecting tread. Suitable platforms will save you a lot of time later by reducing the amount of excavation and fill needed.

A switchback consists of two approaches, a landing or turning platform, a drain for the upper approach and platform, and guide structures. The upper approach and the upper half of the turning platform are excavated from the slope. Part of the lower approach and the lower half of the turn are constructed on fill (figure 69).

Figure 69—Part of the lower approach and the lower half of this switchback are constructed on fill.

The approaches are the place where most of the trouble starts with switchback turns. The approaches should be designed for the primary user group. In general, the last 20 meters (65 feet) to the turn should be as steep as the desired level of difficulty will allow. This grade should be smoothly eased to match that of the turn in the last 2 to 3 meters (6 $\frac{1}{2}$ to 10 feet).

Do not flatten the grade for 20 meters (65 feet) before the turn. If anything, steepen the approach grades to foster the sense that the switchback is the most convenient way of gaining or losing altitude (figure 70). There is absolutely nothing as infuriating as walking a nearly flat grade to a distant switchback turn while looking several meters over the edge at the nearly flat grade headed the other direction. You can build a Maginot Line of barricades and still not prevent people, packstock, and wildlife from cutting your switchback. The only exception is a trail designed primarily for wheeled vehicles where a flatter approach makes it easier for riders to control their vehicles.

Figure 70—The rocks help prevent users from being tempted to cut this switchback.

As the upper approach nears the turn, a grade reversal should be constructed. The tread below this point should be insloped until the halfway point in the turn. Both sides of this drain ditch should be backsloped to an angle appropriate for the local soil. As the turn is reached, the tread should be 0.5 to 1 meter (19 to 39 inches) wider than the approach tread. This is particularly important on small radius turns and for wheeled vehicles. It's less necessary for hikers and packstock.

The turn can be a smooth radius ranging from 1.5 to 3 meters (5 to 10 feet) or a simple Y-shaped platform. A smooth radius turn is important if the trail's use includes wheeled traffic or packstrings. The Y platform works for hikers (figure 71). The turn platform is nearly flat, reaching no more than a 5-percent grade. The upper side is excavated from the

Switchback With Rock Retaining Wall

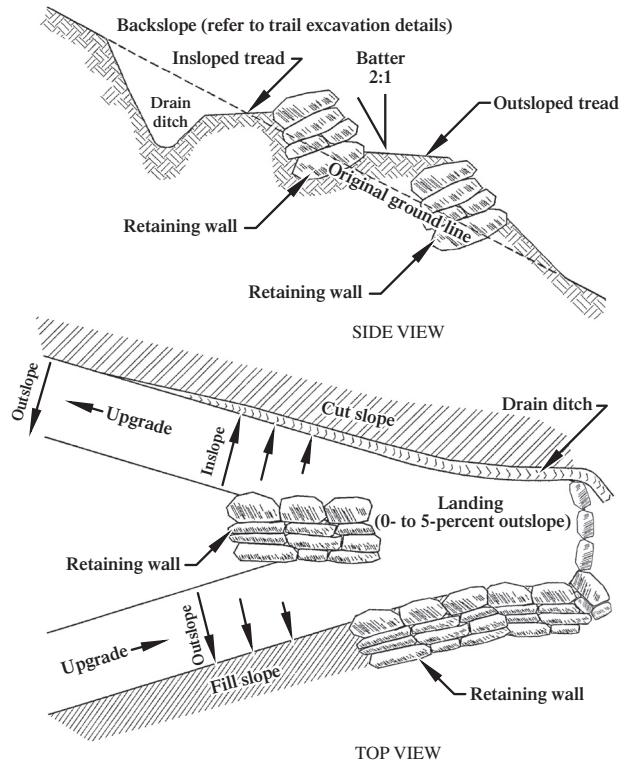


Figure 71—A switchback with a “Y” turning platform, suitable for hiking trails.

sideslope and borrow is used to construct the fill on the lower side. Switchbacks on steep sideslopes can require very large excavations to reach a stable backslope angle and provide clearance for packstock loads. The greater the turn's radius, the wider the platform, or the flatter the turn, the more excavation that will be required. A point may be reached where a retaining wall is needed to stabilize the backslope.

The amount of tamped fill required on the lower side of the turn will usually be at least as much as was excavated from the upper side unless a retaining wall is used to support the fill. A retaining wall is absolutely necessary where the terrain is steeper than the angle of repose for the fill material.

The tread in the upper portion should be insloped, leading to a drain along the toe of the backslope. This drain should extend along the entire backslope and be daylighted (have an outlet) where the excavation ends. Construct a spillway for the drain to protect the adjacent fill from erosion. You may need guide structures—rock walls or logs are common—on the inside of the turn to keep traffic on the trail.

Construct the approach on the lower side of the turn on tamped fill. The retaining wall should extend for most of this length. The tread on the lower portion of the turn should be outsloped. The fill section transitions into the full-bench part of the approach; the approach changes grade to match the general tread grade.

Try to avoid “stacking” a set of switchback turns on a hillside. Long legs between turns help reduce the temptation to shortcut. Staggering the turns so that legs are not the same length reduces the sense of artificiality (figure 72). Keep the grade between turns as steep as the challenge allows. Remember, travelers will cut switchbacks when they feel it's more convenient to do so than to stay on the tread. The designer's goal is to make travel on the trail more attractive than the shortcut.

Maintaining climbing turns and switchbacks requires working on the tread, improving drainage, and doing any necessary work on retaining walls, guide structures, and barricades. The tread should be insloped or outsloped as necessary, slough should be removed to return the tread to design width, and tread obstacles should be removed.

Switchbacks

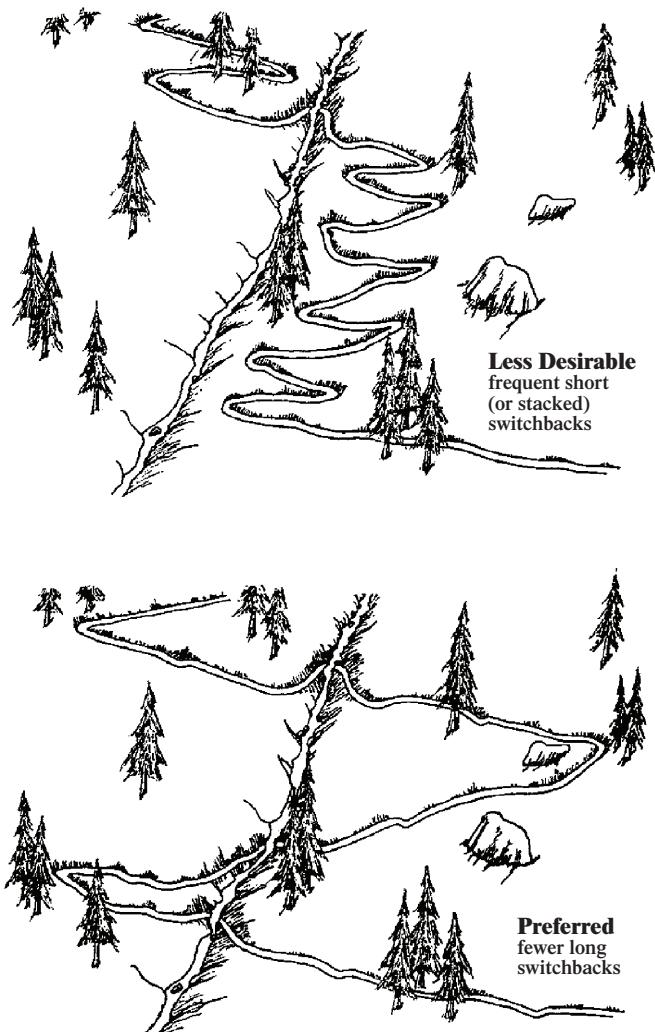


Figure 72—Long sections of trail between switchbacks are usually better than short sections—fewer switchbacks will be needed, with fewer turns to shortcut.

Retaining Walls

Retaining structures keep dirt and rock in place. The retaining wall keeps fill from following the call of gravity and taking the tread with it. Retaining walls are useful for keeping scree slopes from sliding down and obliterating the tread, for keeping streams from eroding abutments, and for holding trail tread in place on steep sideslopes.

Two common retaining structures are the ***rock retaining wall*** and the ***log crib wall***. Of course, rock is more durable and lasts longer than wood.

Rock retaining walls are used when a sturdy wall is needed to contain compacted fill (figure 73) or to hold a steep excavated backslope in place (figure 74). Rock retaining walls are also called ***dry masonry*** because no mortar is used between the rocks.

Figure 73—A rock retaining wall is needed to hold compacted fill.

Figure 74—A rock retaining wall holding a steep, excavated backslope in place.

Ideally, the bigger the rock, the better. Big rocks are less likely to shift or become dislodged. At least half of the rocks should weigh more than 60 kilograms (130 pounds). The best rock is rectangular with flat surfaces on all sides. Round river rock is the worst.

To build a rock retaining wall, excavate a footing to firm, stable dirt or to solid rock. Tilt the footing slightly into the hillside (**batter**) so the rock wall will lean into the hill and dig it deep enough to support the foundation tier of rocks (these are usually the largest rocks in the wall). Ideally, the footing is dug so that the foundation tier is embedded for the full thickness of the rocks.

The batter should range from 2:1 to 4:1 (figure 75). Factors determining this angle include the size and regularity of the rock, the depth of header rocks, and the steepness and stability of the slope. At batter angles steeper than 4:1 or so, cement, internal anchors, or both, may be needed for stability.

Rock Retaining Wall Terminology

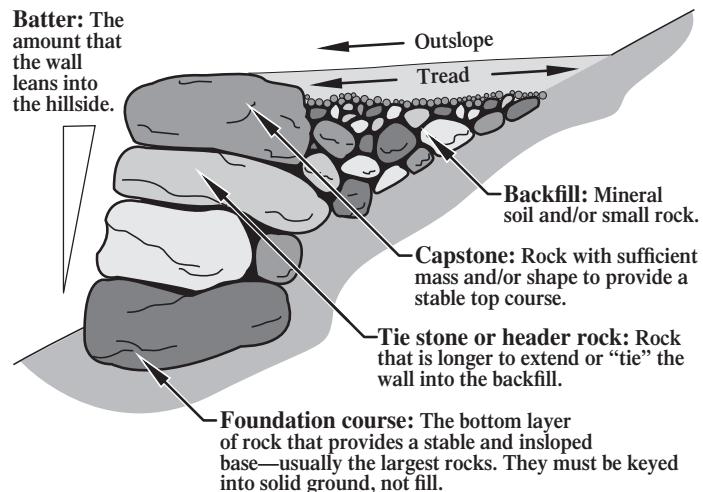


Figure 75—Terms used to describe rock retaining walls.

The **keystone** is laid into the footing and successive tiers are laid. For each tier, overlap the gaps between rocks in the next lower tier, called breaking the joints. Each tier should be staggered slightly into the hill to create the desired amount of batter. **Header rocks** are long rocks turned and placed so that they extend deep into the hillside. Using header rocks is particularly important if the wall's cross section widens as the wall gets higher.

Rocks in each successive tier should be set so they have at least three points of good contact with the rocks below. Good contact is defined as no wobble or shifting under a load without relying on shims (or chinking) to eliminate rocking. Shims are prone to shifting and should not be used to establish contact, especially on the face of the wall, where they can fall out. Add backfill and tamp crushed rocks into the cracks as you build.

The Right Rock

In reality, you have to use the rock that is available. Small walls can be constructed successfully from small rocks. The key is the foundation and batter. Remember to save some large rocks for the *capstones*. A final point—most rock can be shaped with a few good blows with a rock hammer and carbide-tipped rock chisel. Placing rock on dirt rather than another rock before striking it will help ensure that the rock breaks where you want it to.

Log walls are designed to keep compacted fill in place (figure 76). Construct wood walls by interlocking logs or beams, pinned or notched (for logs) at the joints. Lay sill logs at right angles to the direction of travel and alternate tiers of face logs and header logs (figure 77).

Each successive tier is set to provide enough batter to resist creep pressure from the slope and to reduce pressure on the face logs from the fill. The ends of the header logs are seated against the backslope of the excavation for stability. As fill is tamped in place, filler logs are placed inside the structure to plug the spaces between the face logs. Filler logs are held in place by the fill.

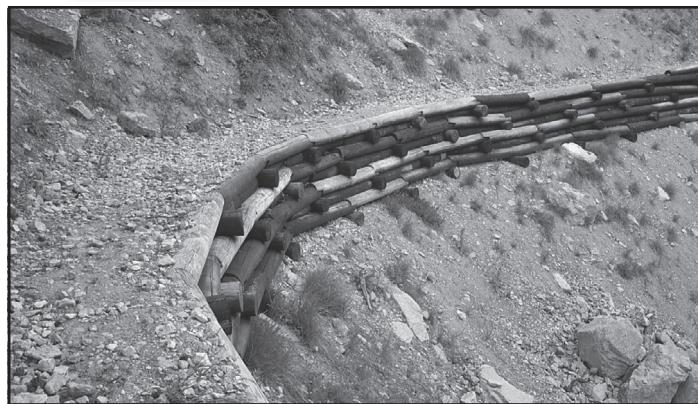


Figure 76—Crib walls help keep compacted fill in place.

Crib Wall

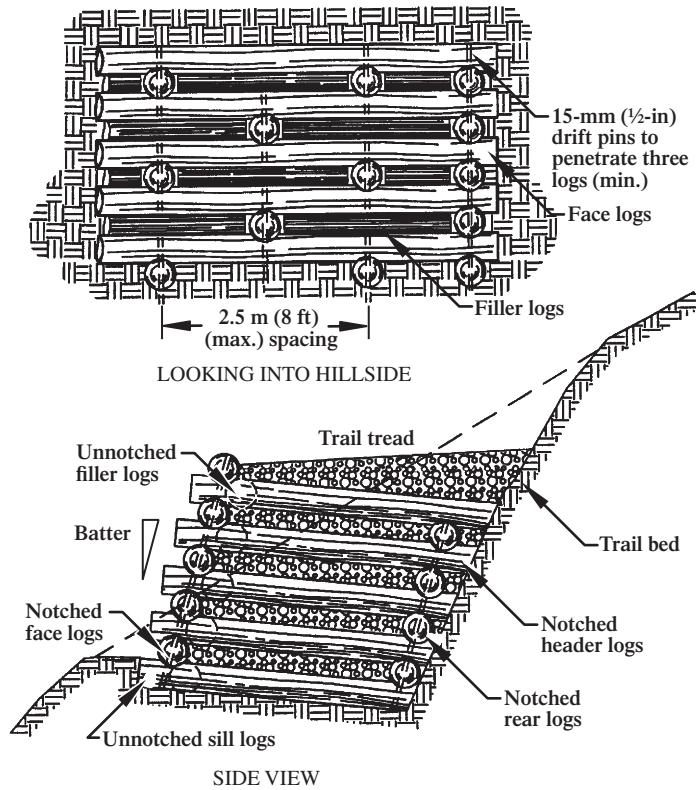


Figure 77—The characteristics of a crib wall. Treated logs are recommended.

Outslope the tread to keep water from saturating the fill and excavation. Use guide structures to keep traffic off the edge of the tread.

All retaining structures should be checked carefully for shifting, bulging, or loose structural material. Make sure that all the footings are protected from erosion. Anchor guides should be secure.

Wire baskets (often called **gabions**) are another retaining structure. Gabions are wire baskets filled with rock (figure 78). The baskets are wired together in tiers and can be effective where no suitable source of well-shaped rock is available. Gabions look more artificial (in the eyes of traditionalists at any rate) and may not last as long as a rock wall, depending on the type of wire used and the climate.

Figure 78—Wire baskets, often called gabions, are another retaining structure.

Steps

Steps are used to gain a lot of elevation in a short distance. Steps are common on steep hiking trails in New England and elsewhere and less common (but not unheard of) on western trails used by horses and mules. Wooden steps of all configurations are common in coastal Alaska (figure 79).

Figure 79—A step-and-run boardwalk in Alaska.

Sometimes steps are used on an existing trail to fix a problem caused by poor trail location or design. Often, the result is out of character with the desired experience and esthetics of the trail. Before you construct steps, make sure they are consistent with the expectations of those the trail is designed to serve.

Your goal is to design the height (rise) and depth (run) of the steps to match the challenge desired. Steps are harder to negotiate as the rise increases. The difficulty also increases as the steps are closer together.

Yet as the trail becomes steeper, the step must either be higher or the distance between steps must be shorter. Steps can be built into a trail that traverses the slope. This allows the traveler to gain elevation rapidly, without the scary steepness of a stairway.

The components of a step are: the rise, the run, a landing on easier grades, and often retainer logs (figure 80). The rise is the height of the face of each step. The run is the distance from the edge of one step to the base of the next step's face. The landing is the extension of the run above the step. In structures where the landing is composed of tamped fill material, logs are used to retain the fill.

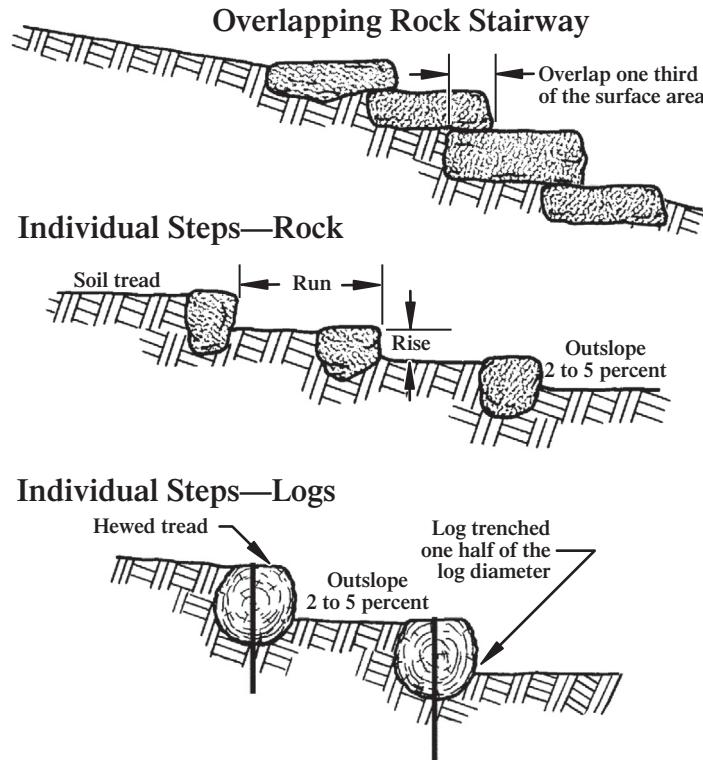


Figure 80—Common types of steps.

Hikers, especially backpackers, generally don't like steps and will walk alongside them if there is any opportunity. The steps need to be comfortable to climb or they won't be used. This means keeping the rise a reasonable 150 to 200 millimeters (6 to 8 inches) and the run long enough to hold a hiker's entire foot, 254 to 305 millimeters (10 to 12 inches, figure 81). It's helpful to corral the sides of steps with rocks to encourage users to stay on the steps.

Stair Proportions

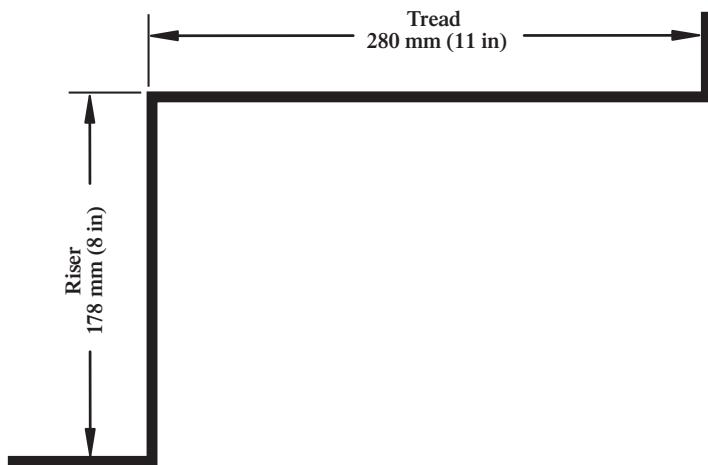


Figure 81—A general rule of thumb for stairs: twice the riser plus the tread should equal 635 to 686 millimeters (25 to 27 inches).

The most important area of the step is usually the tread. This is where most users step as they climb. The top of the step (and landing) should be stable and provide secure footing. The edge of the step should be solid and durable. The face or riser of each step should not slope back too far. This is particularly important as the rise of the step increases.

If the stairway climbs straight up the hill, each step should be slightly crowned to drain water to the edges or be sloped slightly to one side. When the trail traverses a slope, each step and landing should be out-sloped slightly. Water should not be allowed to descend very far down a set of steps or to collect on the landing. A grade reversal or drain dip is a good idea where the trail approaches the top of the steps.

Build stairways from the bottom up, at a break in the grade. Bury the first rock; it will act as an anchor. The most common mistake is to start part way up a grade. If you do so, the trail will wash out below the stairs. The bottom step should be constructed on a solid, excavated footing. If it is constructed on top of exposed rock, it should be well pinned to the footing. Each successive step is placed atop the previous step (figure 82). Wood steps are usually pinned to each other and to the footing. Dry masonry rock steps usually rely on the contact with the step below and with the footing to provide stability (figure 83).

Step Construction

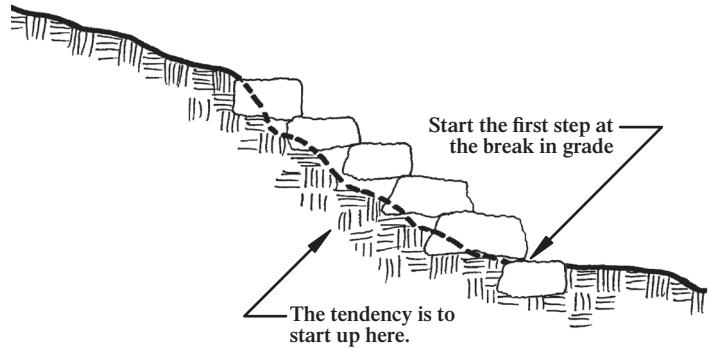


Figure 82—Begin laying steps at the bottom of a grade rather than midway.

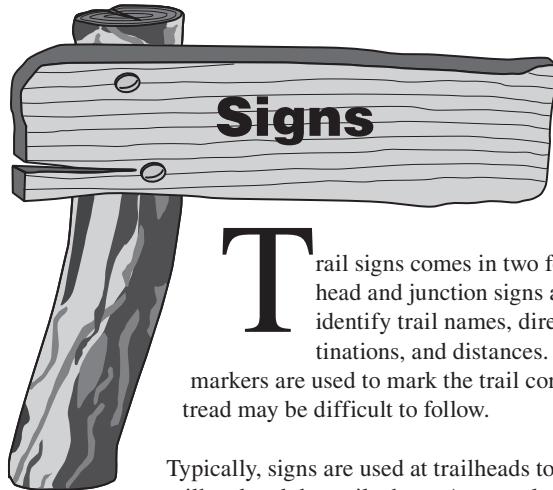
Figure 83—Each dry masonry rock step needs to contact the step below.

Steps with landings are a bit harder to secure because the steps do not overlap. Each step can be placed in an excavated footing and the material below the rise removed to form the landing of the next lower step. Usually, this is the most stable arrangement. Or the step can be secured

on the surface and fill can be used to form a landing behind it. When the landing consists of tamped fill, the material used to provide the rise does double duty as a retaining structure. These steps must be seated well to prevent them from being dislodged by traffic. For stock use, landings should be long enough, about 2 meters (6 ½ feet), to hold all four of the animal's feet (figure 84).

Figure 84—For stock use, landings should be long enough to hold all four of the animal's feet, or about 2 meters (6 ½ feet) long.

In all steps, the key is to use the largest material possible and to seat it as deeply as possible. Rocks should be massive and rectangular. On steps that traverse a slope, it helps to seat the upper end of the step in footings excavated into the slope.


Pavers

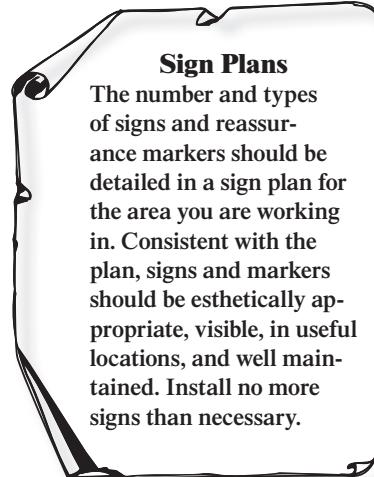
Pavers can be used to armor switchback turns and steeper slopes, especially on trails designed for motorized traffic (figure 85). Some styles of pavers allow vegetation to penetrate them; others have voids that can be filled with soil, gravel, or other suitable material. In highly erodible soils, pavers combined with geotextiles are an option.

Figure 85—Pavers can be used to armor sections of trail for motorized traffic.

Trail signs come in two forms. Trailhead and junction signs are used to identify trail names, directions, destinations, and distances. Reassurance markers are used to mark the trail corridor when the tread may be difficult to follow.

Typically, signs are used at trailheads to identify the trailhead and the trails there. At some locations, destinations accessed by these trails and the distances to the destinations will be displayed. Signs also are used at system trail junctions (and road crossings) to identify each trail by name and indicate its direction. Signs may identify features, destinations, and occasionally, regulations, warnings, or closures.

Reassurance markers include cut blazes on trees; wood, plastic, or metal tags; posts; and cairns. Reassurance markers are more useful as the tread becomes more difficult to identify and follow. These markers help travelers identify the trail corridor when the tread is indistinct, the ground is covered with snow, or when the route is confused by multiple trails or obscured by weather, such as dense fog. National trails usually are marked periodically with specially designed tags.


The number of signs or reassurance markers depends primarily on the planned user skill level. Low-challenge trails typically will be signed with destinations and distances. Usually, the trail will be so obvious that reassurance marking is necessary only at points where users might be confused. As the desired opportunity for challenge rises, the amount of information given by signs usually drops to trail identification and direction. You may find special guidelines for wilderness areas.

Installing Signs

Trail signs are made of a variety of materials; the most typical is Carsonite or wood. Usually, signs are mounted on posts or trees. Signs in rocky areas should be mounted on a post seated in an excavated hole or supported by a well-constructed cairn.

Wooden posts may be obtained onsite or hauled in. Onsite (native) material is usually less expensive, but may have a shorter useful life. Native material looks less artificial; it may be preferred in primitive settings. Purchased posts should be pressure treated. Their longer lifespan will offset the higher initial purchase and transportation costs. Round posts appear less artificial than square posts and provide more options for custom alignment of signs at trail junctions. Posts should be at least 150 millimeters (6 inches) in diameter.

Signs should be placed where they are easy to read, but far enough from the tread to leave clearance for normal traffic. Different agencies have special rules regarding signs. Make sure you're following the rules that apply to your trail. In deep snow country, try to locate the post in relatively flat surroundings to reduce the effects of snow creep, which can carry signs down the hill.

Sign Plans

The number and types of signs and reassurance markers should be detailed in a sign plan for the area you are working in. Consistent with the plan, signs and markers should be esthetically appropriate, visible, in useful locations, and well maintained. Install no more signs than necessary.

Spikes or lag screws can be used at the base of the post to improve anchoring (figure 86). Seat the post in the hole and keep it vertical while you drop a few rocks into the hole to secure it. Tamp these rocks with a rockbar or tool handle to jam them into place. Continue to place rocks and dirt in the hole, tamping as you go. Top off the hole with mounded soil to accommodate settling and to prevent water from puddling around the post.

Signpost Installation

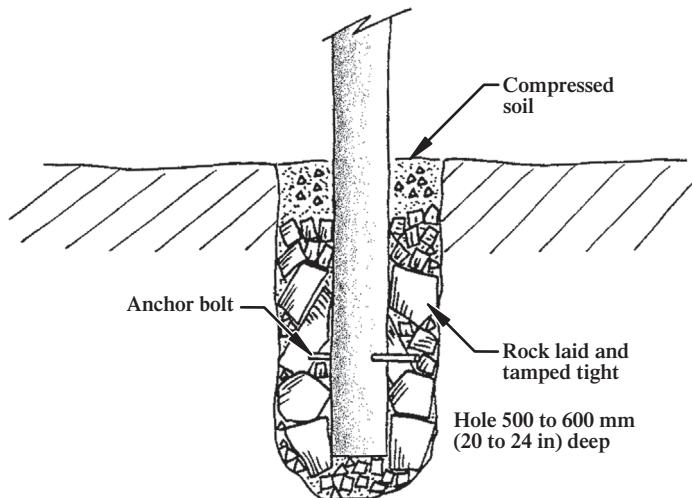


Figure 86—The key to placing solid posts is to tamp the rock and soil with a rockbar as you fill the hole.

In rocky areas or very soft soils (such as those next to a turnpike), signposts can be supported by a cairn. Horizontally placed spikes or lag screws should be used at the base for anchors. Chinking the cairn with smaller rocks helps tighten the post against the larger stones. “Anchoring Trail Markers and Signs in Rocky Areas” (Watson 2005) provides instructions for installing signposts without using heavy tools and equipment.

Signs should have holes already drilled so they can be attached to the post. Level each sign and secure it with galvanized lag screws or, better yet, through-bolts that have a bolt head and washer on one side and a washer and nut on the other. Galvanized hardware reduces rust stains on the sign. New wood preservatives like ACQ (alkaline copper quaternary compound) are highly corrosive to aluminum and carbon steel. Use triple-dipped galvanized fasteners. Galvanized washers should

be used between the head of the screw and the sign face to reduce the potential for the sign to pull over the screw. In areas where sign theft is a problem, use special theft-prevention hardware.

The bottom edge of signs should be set about 1.5 meters (60 inches) above the tread. The sign's top edge should be 50 millimeters (2 inches) below the top of the post. Where snow loads are a problem, the post can be notched and the signs seated full depth in the post. Treated posts will be susceptible to rotting where they are notched, so they should be spot treated with preservative.

Use caution when mounting signs to trees. The sign should be obvious to travelers and legible from the tread. If signs mounted on trees doesn't meet these conditions, use a post instead. Mount signs to trees with galvanized lag screws and washers, rather than spikes. That way, the sign can be loosened periodically to accommodate tree growth. Leave a gap between the sign and the tree to allow for the growth.

Installing Reassurance Markers

Reassurance markers are used only where the trail is not obvious. If the tread is obvious during the regular use season, these markers aren't needed. Reassurance markers may be helpful if a trail is hard to follow because the tread is indistinct, regularly covered with snow during part of the normal use season, or if weather conditions (such as fog) make the trail hard to distinguish at times. Reassurance markers also are helpful at junctions with nonsystem (informal) trails, or where multiple trails cause confusion.

Place reassurance markers carefully. They should be clearly visible from any point where the trail could be lost. This is a judgment call, often controversial, based on the challenge level served by the trail and the conditions along it. Higher challenge trails need fewer markers; lower challenge trails may need more.

Each marker location should be flagged before installation and checked for visibility in the desired direction of travel. Each location should be marked in both directions (on both sides of the same tree) so there is no question whether or not the marker is official. The marking decisions should be based on traffic traveling in both directions. Be conservative with markers. It's better to improve tread visibility than to rely on markers, except on high-challenge trails where tread frequently may not be visible at all.

The classic reassurance marker is a blaze cut on a tree. The standard Forest Service *blaze* should always be used to differentiate it from the freeform blazes and antler rubbings that appear on nonsystem trails (figure 87). Cut blazes carefully because a mistake can't be repaired. If a blaze is consistently buried by snow during part of the use season, the

Blazes and Marker Tags

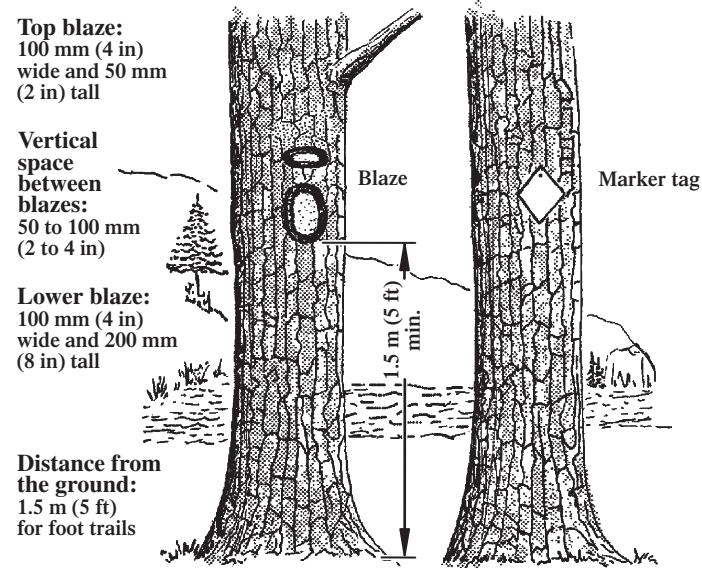
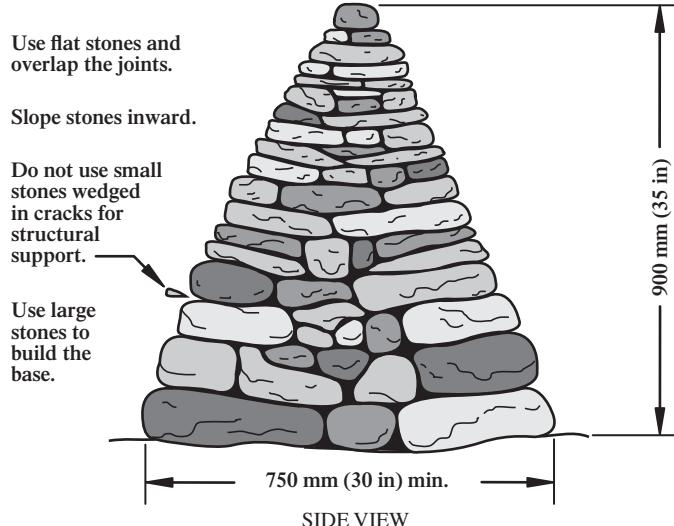


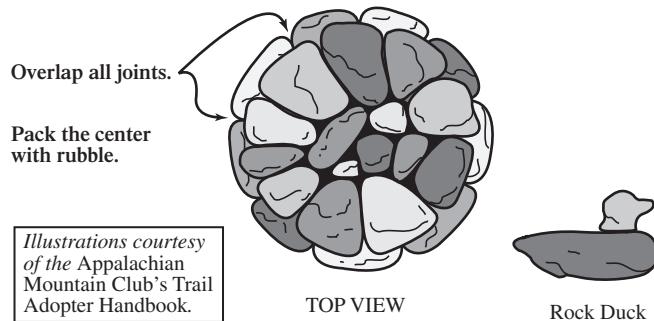
Figure 87—Blaze trees on both sides. Cut the blaze no deeper than needed for clear visibility. Blazes are no longer cut into trees in many parts of the country.

blaze can be cut higher on the tree, but not so high that it becomes difficult to locate from the tread. Cut blazes may, on rare occasions, need to be freshened—recut them carefully.

Blazes are no longer cut on trees in many parts of the country. Check with your local trail manager to learn what's appropriate. Policies vary across the Nation.


Different types of blazes may be used on some specially designated trails, such as the Appalachian Trail. **Blazers** (sometimes called marker tags) are used when higher visibility is desired and esthetic considerations are not critical. The most common tags are colored diamonds of plastic or metal, reflective for night use or nonreflective when called for in the trail management plan. Various colors are used. These tags should be mounted on trees using aluminum nails. Allow 12 millimeters ($\frac{1}{2}$ inch) or so behind the tag for additional tree growth. Directional arrows, where appropriate, should be placed in a similar fashion. Markers also can be mounted on wooden or fiberglass posts.

Blazers should be checked for continued usefulness. If the tread is more obvious than when these markers were originally installed, consider removing some. If folks are getting lost, restore more visible tread, move existing blazers to more visible locations, or add a few more where they will be most effective. Remove all signs and blazers that don't fit the plan for the area.


Painted blazes are sometimes used. Be absolutely sure to use a template of a size and color specified in your trail management plan. Don't let just anyone start painting blazes.

Cairns are used in open areas where low visibility or snow cover makes it difficult to follow the tread or where the tread is rocky and indistinct. Two or three stones piled one on top of the other—sometimes called rock ducks—are no substitute for cairns and should be scattered at every opportunity. Cairns are similar in construction to rock cribs and consist of circular tiers of stones (figure 88).

Cairns

SIDE VIEW

TOP VIEW

Rock Duck

Figure 88—Two- or three-stone rock ducks are no substitute for cairns and should not be built.

Make the base of the cairn wide enough to provide enough batter for stability. In really deep snow country, you may need to add a long guide pole in the center as the cairn is built. If it's appropriate to remove the guide pole during the summer, a pipe can be built into the center of the cairn, allowing the guide pole to be removed easily.

Cairns should be spaced closely enough that the next cairn is visible in either direction from any given cairn during periods of poor visibility (such as dense fog). Cairns should be placed on small rises (not in swales). If cairns are used in areas of large talus, use a 2-meter (6.5-foot) guide pole in the center to distinguish the cairn from other piles of rock. The best time to decide where to place cairns is during a day with poor visibility.

In some settings, *guide poles* are more effective than cairns. They are most useful in snowfield crossings to keep traffic in the vicinity of the buried trail. Guide poles should be long enough to extend about 2 m (6.5 ft) above the top of the snowpack during the typical season of use. Guide poles should be at least 100 mm (4 in) in diameter. They should be sturdy enough to withstand early season storms before the snow can support them and to withstand pressures from snow creep later in the season. Avoid placing guide poles in avalanche paths. Don't mark trails for winter travel if they cross known avalanche paths.

Guide poles are also used in large meadows where tall grasses make cairns hard to spot, or where there is too little stone for cairns.

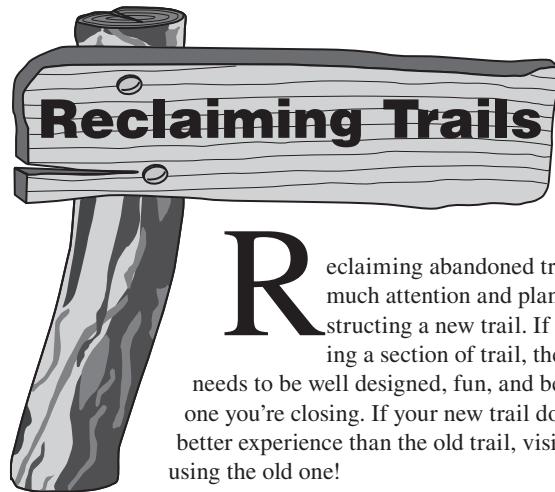
Maintaining Signs and Markers

Sign maintenance consists of remounting loose or fallen signs, repairing or replacing signs, and resetting or replacing leaning, damaged, rotting, or missing posts.

If the sign is missing, a replacement sign should be ordered and installed. Consider why the sign is missing. If the sign was stolen, consider using theft-resistant hardware to mount its replacement. If

Photo Sign Inventories

Before-and-after photos help document what is happening to signs in the field and how new signs look before the forces of nature (and visitors) resume work. A good sign inventory with photos makes it easier to order replacements for missing or completely trashed signs.


the sign was eaten by wildlife, consider less palatable materials. If weather or natural events munched the sign, consider stronger materials, a different location, or a different system for mounting the signs.

For signs mounted on trees, you may need to loosen the lag screws slightly to give the tree growing room. If the sign is on a post, check to make sure that it is snugly attached. Replace rotting posts. Don't just try to get through "one more season."

Check with your manager for guidelines that will help you decide when signs should

be replaced because they have bullet holes, chipped paint, missing or illegible letters, incorrect information, cracked boards, splintered mounting holes, or missing pieces. Consider the consequences of not repairing or replacing deficient signs. Take some photos to help portray the situation.

Reclaiming abandoned trails requires as much attention and planning as constructing a new trail. If you're rerouting a section of trail, the new section needs to be well designed, fun, and better than the one you're closing. If your new trail doesn't provide a better experience than the old trail, visitors will keep using the old one!

The goal is to reduce the impact trails have on the landscape. Simple restoration may consist of blocking shortcuts and allowing the vegetation to recover. Complex restoration projects include obliterating the tread, recontouring, and planting native species. Careful monitoring and followup are needed to ensure that almost all evidence of the old trail is gone. Restoration projects range from simple and relatively inexpensive to complex and costly (figure 89).

Figure 89—A candidate trail for a turnpike or rerouting, followed by reclamation of the old trail.

For more detailed advice on restoration, see the “Wilderness and Back-country Site Restoration Guide” (Therrell and others 2006).

Past practices of trail abandonment have left permanent scars on the land. You probably know of abandoned trails that had a few logs and rocks dragged into the tread and trenches. Decades later, those same trails are still visible, still eroding, still ugly, and sometimes, still being used!

Reclamation strategies include: closure, stabilization, recontouring, re-vegetation, and monitoring. Restoration needs to be carefully planned. The consequences of each strategy should be examined. Consult with a hydrologist, landscape architect, and soil and plant specialists when planning to reclaim an old trail.

Each abandoned trail section should be reclaimed. This is true whether an entire trail is abandoned or a segment with multiple trails is being narrowed to one tread. If the abandoned trail is not blocked to prevent further use, it may persist indefinitely. Closure is particularly important if stabilization and revegetation are to succeed. The abandoned tread should be blocked to all traffic, recontoured, and disguised (figure 90)

Figure 90—Sagebrush is being transplanted to help disguise this reclaimed trail.

to prevent users from being tempted to take it. This work should be completed for all segments visible from trails that remain open.

Stabilizing abandoned tread to prevent further erosion will promote natural revegetation in some instances. Trails break natural drainage patterns and collect and concentrate surface waterflows. Restoring the natural contour of the slope reestablishes the local drainage patterns and reduces the likelihood of erosion. Recontouring usually eliminates any temptation to use the old trail and assists revegetation. Pull fillslope material back into the cut and use additional material to rebuild the slope, if necessary.

Completely break up or scarify the compacted tread at least 4 inches deep. Doing so will allow native grasses, plants, and seed to take hold and grow. Fill in the visual or vertical opening of the corridor by planting shrubs, trees, and even deadfall (figure 91). Finally, sprinkle leaves and needles to complete the disguise.

Remove culverts and replace them with ditches.

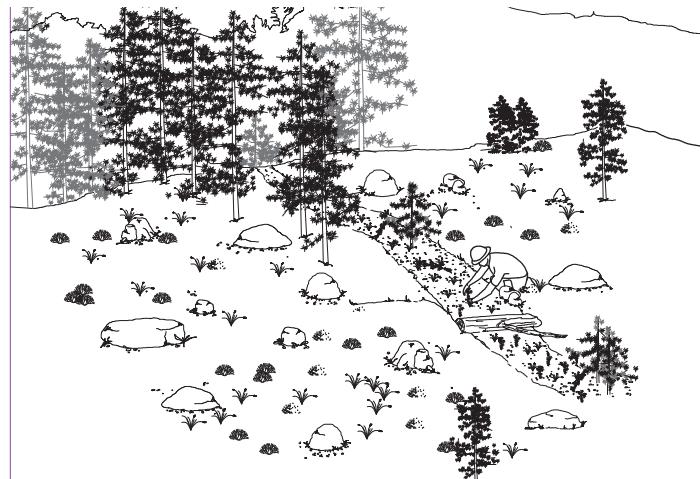


Figure 91—Abandoned trails need to be blocked off effectively, and with sensitivity. Plant native grasses and plants. Use shrubs or deadfall to fill the opening left by the abandoned trail.

Check Dams

Check dams are used on sections of abandoned, trenched tread to stop erosion and hold material in place during site restoration. Check dams are intended to slow and hold surface water long enough for the water to deposit sediment it is carrying. Check dams should be used with drainage structures to reduce overall erosion from the abandoned tread (figure 92).

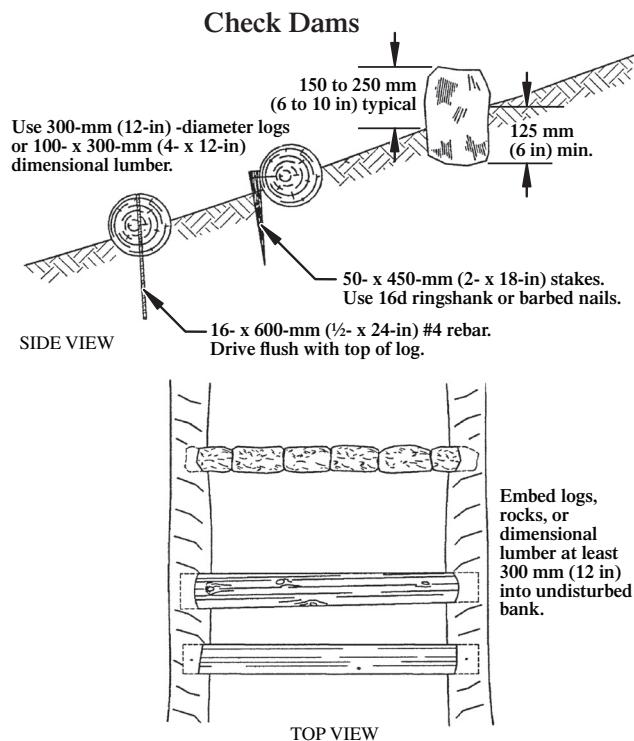
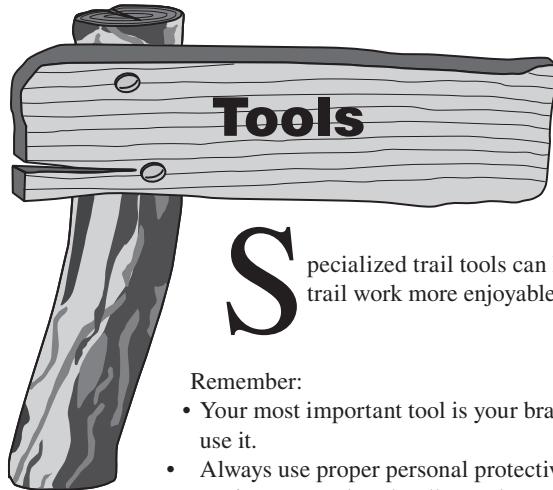


Figure 92—Check dams allow soil to rebuild on eroded trails.

Check dams are best used as holding structures for fill to help recontour the old tread. The material used in the dam should be seated in an excavated footing that extends into the sides of the gully. As material behind

the dam builds up, additional levels can be added to the dam with enough batter to keep the dam stable against the pressure of the fill. The top of the dam should be level or slightly higher than the excavated footing. For watertightness, the uphill face of the dam should be chinked and covered with tamped fill. These trenches take a long time to fill up. Most never do. If they do, add fill below the dam to finish the process.

Spacing between dams depends on the steepness of the old grade and the degree of restoration desired. If the check dams are intended only to slow down erosion on a 25-percent grade, relatively wide spacing is sufficient, every 20 meters (65 feet). If the intent is to fill in half of the old trench, the bottom of each dam should be level with the top of the next lower dam. On steeper grades, the dams need to be closer together (figure 93). If the intent is to approach complete recontouring of the


Figure 93—Over the years, this gully should fill in.

trench, the dams should be closer still, especially on grades steeper than 25 percent. A point of diminishing returns is reached on grades steeper than 40 percent. Check dams would have to be built right on top of each other to retain soil at the full depth of the trench.

Revegetation

Revegetation can be accomplished passively or actively. Passive revegetation allows surrounding vegetation to colonize the abandoned trail. This process works when erosion has been stopped, precipitation is adequate, the tread has been scarified, and adjacent vegetation spreads and grows rapidly. Disturbed soil provides an opportunity for invasive plants to take hold. Active revegetation ranges from transplanting propagated native plants to importing genetically appropriate seed. Successful revegetation almost never happens in a single season. Plan carefully for best results.

There are no cookbook answers for returning abandoned trails to their natural condition. Each site should be evaluated for its potential to regrow and heal. On sites that are moist and relatively flat, it may be possible to block off the trail and allow rehabilitation to proceed naturally. Dry, steep sites will take a lot of work.

S

pecialized trail tools can help make your trail work more enjoyable.

Remember:

- Your most important tool is your brain—use it.
- Always use proper personal protective equipment, such as hardhats, gloves, and safety glasses. Make sure a job hazard analysis has been approved and a safety plan is being followed.
- Select the right tool for the job. Carefully inspect each tool. Make sure the handles are sound, smooth, and straight, and that the heads are tight.
- Pace yourself. Take rest breaks, drink plenty of water, and keep your mind on your work. Crewmembers should trade off on work tasks occasionally for relief from repetitive stresses.
- Keep cutting tools sharp. A dull tool makes your work harder and more dangerous.
- Before you start, clear away any brush or limbs that might catch a swinging tool.
- Posture is important. Stand comfortably in balance. Adjust your stance and tool grip continually to prevent slipping and to avoid glancing blows. Be especially careful when working in wet, slippery conditions.
- Be thinking about the consequences of every move. If you are working with a rock or log, think ahead so you are not standing in the wrong place when it moves. Be ready to toss your tool aside and jump free. Avoid cutting toward any part of your body, and watch out for your coworkers. Use skill, not brute force.

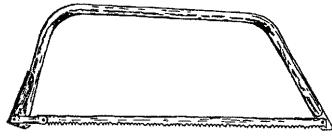
- When carrying, loading, or storing a cutting tool, cover the blade with a sheath to protect both the sharp edge and yourself. In vehicles, make sure tools are fastened down.
- Maintain at least 3 meters (10 feet) between workers as a safe operating distance when using individual chopping and cutting tools.
- Carry sharp tools at your downhill side. Grasp the handle at about the balance point with the sharpened blade forward and down. If you fall, throw the tool clear.
- At the work site, lay tools on the uphill side of the trail with the business end farthest uphill. Make sure the handles are far enough off the edge of the trail so they are not a tripping hazard. Never sink double-bit axes, McLeods, Pulaskis, mattocks, or similar tools into tree trunks, stumps, or the ground where the exposed portion of the tool will present a hazard.

Tools for Measuring

Clinometers—A clinometer, called a clino by trail workers, is a simple, yet useful, instrument for measuring grades. Most clinometers have two scales, one indicating percent of slope, the other showing degrees. Percent slope, the relationship between rise or drop over a horizontal distance, is the most commonly used measure. Percent readings are found on the right hand side of the scale. Don't confuse percent and degree readings. It is easy to do! Expressed as an equation:

$$\text{Percent of Grade} = \frac{\text{Rise}}{\text{Run}} \times 100 \text{ percent}$$

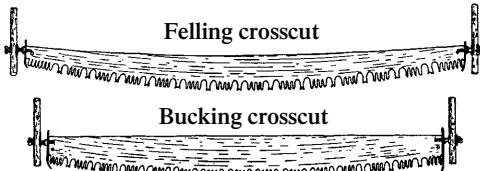
A section of trail 30 meters (100 feet) long with 3 meters (10 feet) of difference in elevation would be a 10-percent grade. A 100-percent grade represents 45 degrees.


Traditionalists often prefer an Abney level to a clinometer. They are easier to see through and there are no measurements to read.

Global Positioning Systems (GPS)—Most trail surveyors are using GPS receivers for accurate trail location, inventory, and contract preparation. Real-time correction is no longer necessary and prices have fallen. GPS is becoming the norm for locating trails.

Tape Measures—Get a tape measure with metric units. Mark off commonly used measurements on your tool handles. Know the length of your feet, arms, fingers, and other rulers that are always handy on the trail. Calibrate the length of your pace over a known course so you can easily estimate longer distances.

Tools for Sawing


Bow Saws—These saws are useful for clearing small downfall and for limbing. They consist of a tubular steel frame that accepts replaceable blades. The blades can be removed by loosening a wing nut or releasing a throw clamp.

Bow saw

Chain Saws—A chain saw can make short work of your cutting tasks—but it is not for wilderness use. Specialized instruction and certification are required, so make sure you are certified before operating a chain saw.

Crosscut Saws—Symmetric crosscut saws, those designed for a sawyer at either end, follow two basic patterns. Felling crosscuts are light, flexible, and have concave backs that conform easily to the arc of the cut and the sawyer's arm. The narrowed distance between the teeth and back

leaves room for sawyers to get wedges into the cut quickly. Bucking crosscuts have straight backs and are heavier and stiffer than felling saws. Bucking saws are recommended for most trail work because they are more versatile.

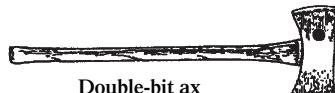
Bucking saws also are available as asymmetric saws, with a handle at one end that can be used by a single sawyer.

Cover the blades with sections of rubber-lined firehose slit lengthwise. Velcro fasteners make these guards easy to put on and take off. When carrying a saw, lay it flat across one shoulder with a guard covering the teeth. The teeth need to face away from the neck. Don't leave a wet guard on a saw.

A sharp crosscut saw is a pleasure to operate, but a dull or incorrectly filed saw is a source of endless frustration, leading to its reputation as a misery whip. Never sharpen a saw without a saw vise and the knowledge to use it. Field sharpening ruins crosscut saws.

Warren Miller's classic, the "Crosscut Saw Manual" (revised 2003), provides information on sharpening techniques. David E. Michael's "Saws That Sing: A Guide To Using Crosscut Saws" (2004) tells you everything else you will need to know. Both are available from the Federal Highway Administration's Recreational Trails Web site: <http://www.fhwa.dot.gov/environment/fspubs/>.

A saw's teeth are needle sharp. Wear gloves when sawing and keep your hands clear of the cut and the blade. Carry bow saws by your side with the blade pointed down. Cover the blade with plastic blade guards or small-diameter fire hose secured with Velcro fasteners. Always carry spare parts and plenty of replacement blades.


Pruning Saws—Pruning saws are useful for limbing, some brushing, and removing small downfall, especially where space is limited and cutting is difficult. Folding pruning saws are handy.

Folding pruning saw

Tools for Chopping

Axes—Axes are of two basic types: single or double bit. Double-bit axes have two symmetrically opposed cutting edges. One edge is maintained at razor sharpness. The other edge usually is somewhat duller, because it is used when chopping around rocks or dirt. Mark the duller edge with a spot of paint.

Double-bit ax

Single-bit ax

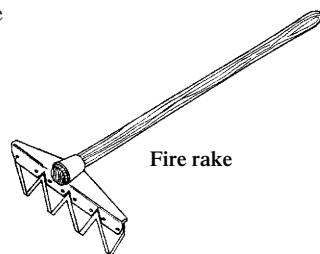
Before chopping with an ax, check for adequate clearance for your swing. Remove any underbrush and overhanging branches that might interfere. Be sure your footing is stable and secure. Chop only when you are clear of other workers.

Stand comfortably with your weight evenly distributed and both feet planted shoulder-width apart. Measure where to stand by holding the handle near the end and stretching your arms out toward the cut. You should be able to touch the blade to the cut.

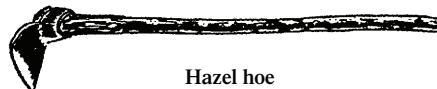
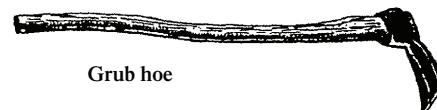
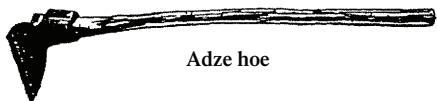
Begin chopping by sliding your forward hand within 150 millimeters (6 inches) of the axhead. As you swing, your forward hand slides back down the handle to the other hand. Just after impact, give the handle a slight twist to pop severed wood out of the cut.

Proficiency with axes requires practice. Inexperienced users and dull axes can cause serious accidents. In general, the force of the swing is not as important as accurate placement. Always chop away from your body. Stand where a glancing blow will not strike you. If you must cut toward yourself, “choke up” on the handle with both hands and use short swings for more control.

“An Ax to Grind—A Practical Ax Manual” (Weisgerber and Vachowski 1999) is a good reference.


Tools for Grubbing

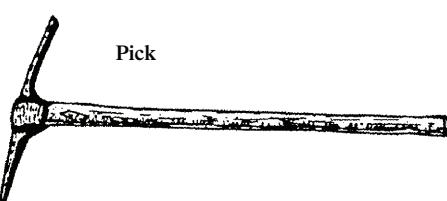
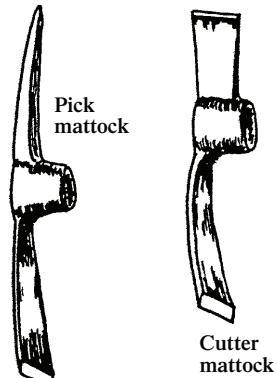
Combination Tools—




The combination or combi tool is basically a military entrenching tool on a long handle, developed for firefighting. It serves as a light-duty shovel and scraper.

Fire Rakes (Council Tools)—The fire rake is another fire tool widely used for trail work, especially in the East.

Hoes—Use an adze hoe, grub hoe, or hazel hoe to break up sod clumps when constructing new trail or when leveling an existing trail tread. These hoes also are useful in heavy duff. They generally work better than a Pulaski.

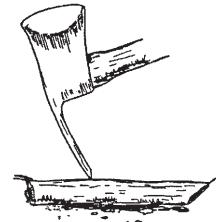
Mattocks—The pick mattock is often recommended as the standard tool for trail work. For many applications, it is much better than a Pulaski. It has a pointed tip for breaking rocks and a grubbing blade for working softer materials. The grubbing blade also may be used to cut roots or remove small stumps. With the edge of the tool, you can tamp dirt and loose rocks or smooth a new tread.



A pick mattock can be used to pry rocks without fear of breaking a handle. Two people working with pick mattocks may not need to carry rock bars.

Maintain good cutting edges on mattocks. Sharpen grubbing blades to maintain a 35-degree edge bevel on the underside. Sharpen pick ends as you would a pick, and maintain factory bevels on cutter blades.

McLeods—The McLeod combines a heavy-duty rake with a large, sturdy hoe. McLeods work well for constructing trails

through light soils and vegetation or for reestablishing tread when material from the backslope sloughs onto the trail. A McLeod is essential for compacting tread and is helpful for checking outslope. If you hate leaving a bolt impression in your compacted tread, remove the bolt that secures the toolhead and weld the head to the mounting plate. McLeods are inefficient in rocky or unusually brushy areas.


Picks—Pick heads have a pointed tip that can break up hard rock by forcing a natural seam. They also have a chisel tip for breaking softer materials.

Work the pick as you would the hoe on a Pulaski with short, deliberate, downward strokes. Avoid raising the pick overhead while swinging. Always wear safety goggles while using a pick to protect yourself from flying rock chips.

Use a grinder or mill bastard file to sharpen the pointed tip to a 3-millimeter ($\frac{1}{8}$ -inch) square. When sharpening the chisel tip, maintain the factory bevel.

Pulaskis—The Pulaski combines an ax and a grub hoe into a multipurpose firefighting tool. It isn't as good as a hoe or mattock for grubbing, nor is it as good as an ax for chopping. It is a popular trail tool, mostly because it is widely available and easier to carry than several single-purpose tools.

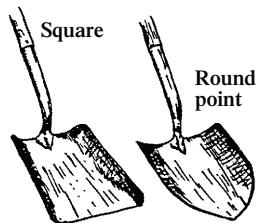
When using the hoe end of a Pulaski, stand bent at the waist with your back straight and parallel to the ground, knees flexed, and one foot slightly forward. Hold the handle with both hands so the head is at an angle to your body, and use short, smooth, shallow swings. Let the hoe hit the ground on its corner. Use the ax end to chop large roots after the dirt has been cleared by the hoe. Always wear safety goggles while grubbing to protect yourself from flying chips of rock and dirt.

Carry the Pulaski at your side. Grip the handle firmly near the head and point the ax end away from your body and down.

Sharpen the cutting edge of the Pulaski's ax as you would any other ax. When sharpening the Pulaski's hoe end, maintain the existing inside edge bevel. Never sharpen the top of the hoe.

Stump Grinders—If you have lots of stumps to remove, consider buying or renting a gasoline-powered stump grinder. These portable grinders are powered by a chain saw motor and have carbide teeth that can be sharpened or replaced. They grind through a stump in much less time and with a whole lot less frustration than would be needed to dig the stump out.

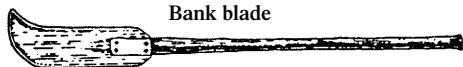
Stump grinder


Tools for Digging and Tamping

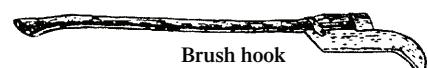
Digging and Tamping Bars—A digging and tamping bar is about the same length as a rockbar, but much lighter. It is designed with a chisel tip for loosening dirt or rocks and a flattened end for tamping. These bars are not prying tools.

Digging bar

Shovels—Shovels are available in various blade shapes and handle lengths. The **common**, or **round-point**, shovel weighs between 2.3 and 2.7 kilograms (5 and 6 pounds). Its head measures about 200 by 300 millimeters (8 by 12 inches). If a shovel feels too heavy or large, choose a

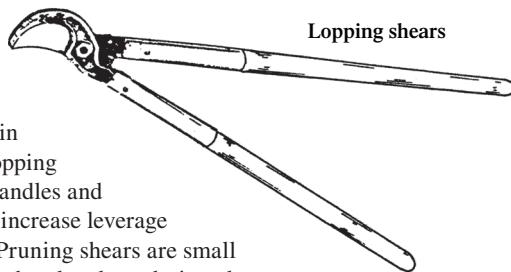


smaller version—remember, you have to lift everything the head holds. The *square* shovel is a flat-bottomed model intended for shoveling loose materials, not digging.


When scooping materials, bend your knees and lift with your legs, not your back. Push the shovel against your thigh, which serves as a fulcrum. This makes the handle an efficient lever and saves your energy and your back. Don't use the shovel to pry objects out of the trail—that's a job for a pick and a pry bar.

Tools for Brushing

Bank Blades and Brush Hooks—Bank blades and brush hooks are designed specifically for cutting through thickets of heavy brush or saplings. Use them for clearing work that is too heavy for a scythe and not suited for an ax.



Bank blade

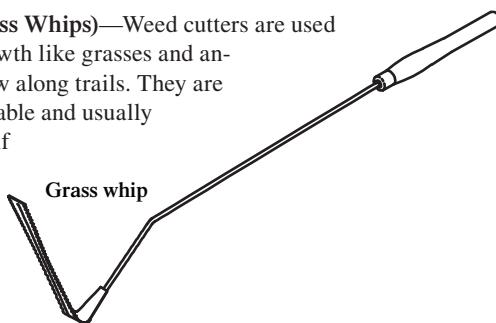
Brush hook

Lopping Shears and Pruning Shears—Lopping and pruning shears are similar in design and use. Lopping shears have long handles and may have gears to increase leverage for thicker stems. Pruning shears are small enough to fit in one hand and are designed to cut small stems and branches. Cutting edges vary, but generally one blade binds and cuts a stem against an anvil or beveled hook. We recommend the hook and blade shear for overhead cuts because the curved blades

Lopping shears

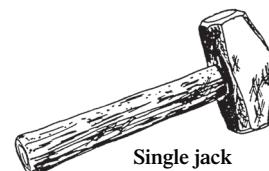
transfer the weight of the shears to the limb. Lopping and pruning shears do a better job of making a nice clean cut than hand saws or axes.

Power Weed Cutters—Several manufacturers make “weed whackers,” motorized weed cutters that use plastic line to cut weeds. Some have metal blades that substitute for the line. These can be a good option for mowing grass and weeds on trails. Follow the manufacturer’s instructions for safe use and operation. Eye protection is especially important.


Swedish Brush (Sandvik)

Axes—These clearing tools work well in brushy thickets or in rocky or confined areas.

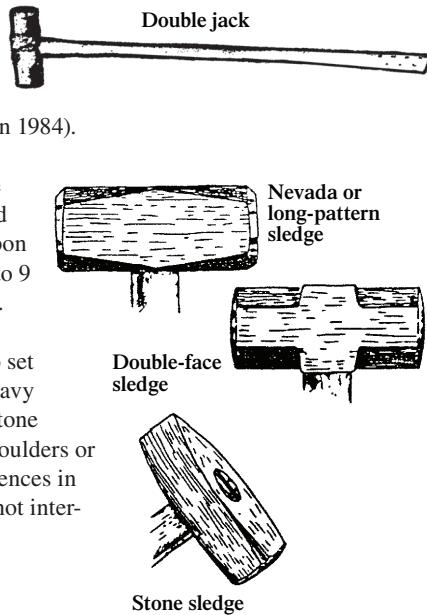
Swedish brush ax


Weed Cutters (Grass Whips)—Weed cutters are used for cutting light growth like grasses and annual plants that grow along trails. They are lightweight and durable and usually are swung like a golf club.

Grass whip

Tools for Pounding and Hammering

Hand-Drilling Hammers—Hand-drilling hammers are used to drill steel into rock or to drive wedges and feathers into cracks or drilled holes. There are two types of hand-drilling hammers—single jacks and double jacks. For more infor-



Single jack

mation on hand drilling, read "Hand Drilling and Breaking Rock For Wilderness Trail Maintenance" (Mrkich and Oltman 1984).

Sledge Hammers—Sledge hammers have heads forged from heat-treated high carbon steel; they weigh from 3.6 to 9 kilograms (8 to 20 pounds).

Driving sledges are used to set heavy timbers and drive heavy spikes or hardened nails. Stone sledges are used to break boulders or concrete. Because of differences in tempering, these tools are not interchangeable.

Tools for Lifting and Hauling

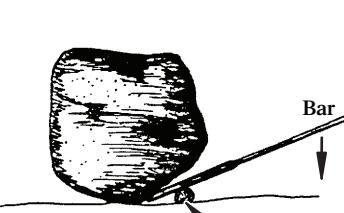
Block and Tackle—A block and tackle is a set of pulley blocks and ropes used for hoisting or hauling. They come in different styles, sizes, and capacities.

Canvas Bags—Heavy-duty canvas bags sold to carry coal are great for dirt, small rocks, and mulch. They are more durable than similar-looking shopping bags.

Canvas coal bag

Motorized Carriers—If your budget and regulations allow, consider a motorized carrier. They come in various configurations and typically feature a dump body. A trailer pulled behind an all-terrain vehicle may be an alternative to a motorized carrier.

Motorized carrier


ATV trailer

Packstock Bags and Panniers—Fabric bags or hard-sided panniers with drop bottoms work well when packstock are used to carry trail construction materials. A design available for fabric bags is included in “Gravel Bags for Packstock” (Vachowski 1995).

Packstock bag

Rockbars—Use a rockbar (also called pry bar) for lifting or skidding large, heavy objects. These bars are heavy duty. They have a chisel tip on one end. The other end can be rounded or pointed.

Place the tip of the chisel under the object to be moved. Wedge a log or rock between the bar and the ground to act as a fulcrum. Press the handle down with your weight over your palms. Never straddle the bar when prying. When the object raises as much as the bite allows, block it and use a larger fulcrum or shorter bite on the same fulcrum to raise the object farther.

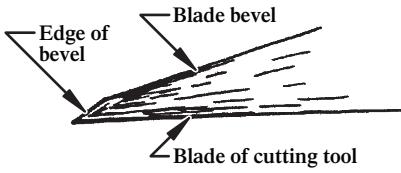
The rounded end of a rockbar is great for compacting material into rock cracks when armoring trail. You can use the pointed end to break large rocks by jabbing the point into a crack and twisting.

Tools for Peeling and Shaping

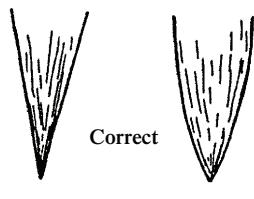
Bark Spuds (Peeling Spuds)—Use a bark spud to peel green logs. Have the log about hip high. Hold the tool firmly with both hands and push the dished blade lengthwise along the log under the bark. Always peel away from your body. Its three sharpened edges make this tool unusually hazardous to use and transport.

Bark spud

Drawknives—A drawknife works best to peel dry logs. Position the log about waist high, and grasp both handles so the beveled edge of the blade faces the log. Begin each stroke with arms extended and pull the tool toward you while keeping even pressure on the blade. Keep your fingers clear of the blade's corners.


Drawknife

Tools for Sharpening


Inspect all tools before use. Sharpening makes tools last longer. A small scratch that is ignored could lead to a serious crack or nick in the blade.

Use a file or grindstone to remove metal from a dull edge. If there are no visible nicks, a touchup with a whetstone will restore a keen cutting edge. In these instances, you need only restore the edge bevel. Whet-

ting the edge removes very small bits of metal from the blade and causes the remaining metal to burr slightly on the cutting edge. This burr is called feather, or wire edge. Remove this weak strip by honing the edge on the other side. The correctly honed edge is sharp, does not have a wire edge, and does not reflect light or show a sharpening line. Wear gloves when sharpening cutting edges.

Blade Bevels

Restoring the blade bevel requires coarser grinding tools to reshape worn cutting blades. Reshape blades with hand files, sandstone wheels, or electric grinders. Remove visible nicks by grinding the metal back on the blade. Remember that the correct blade bevel must be maintained. If the shape can't be maintained, have a blacksmith recondition the toolhead or discard it.

A hand-tool sharpening gauge that gives you all the correct angles can be ordered from the General Services Administration (NSC No. 5210-01-324-2776).

Wrong

If a cutting edge is nicked by a rock, it may be work hardened. A file will skip over these spots and create an uneven edge. Use a whetstone or the edge of a bastard file to reduce the work-hardened area, then resume filing. Alternate using a whetstone and the file until the file cuts smoothly over the entire length of the edge.

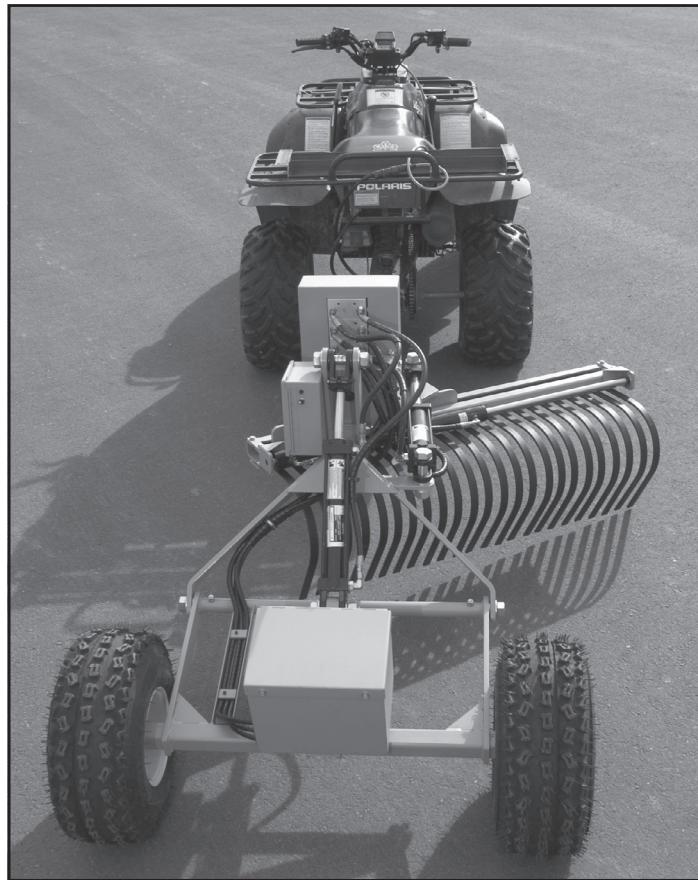

Files—Files come in single or double, curved or rasp cuts. Single-cut files have one series of parallel teeth angled 60 to 80 degrees from the edge; they are used for finishing work. Double-cut files have two series of parallel teeth set at a 45-degree angle to each other; they are used

for restoring shape. Curved files are used for shaping soft metals. Rasp-cut files are used for wood.

Files are measured from the point to the heel, excluding the tang (the tip used

to attach a handle). File coarseness is termed bastard, second cut, or smooth. The bastard will be the coarsest file available for files of the same length. A 254-millimeter (10-inch) mill bastard file is good for all-around tool sharpening. Before filing, fit the file with a handle and knuckle guard. Always wear gloves on both hands. Secure the tool so both hands are free for filing. Use the largest file you can. Remember that files are designed to cut in one direction only. Apply even pressure on the push stroke, then lift the file up and off the tool while returning for another pass.

Store or transport files so they are not thrown together. Protect them from other tools as well. An old piece of fire hose sewn shut on one end makes a great holder for several files, a guard, and a handle.



Mechanized Trail Building Equipment

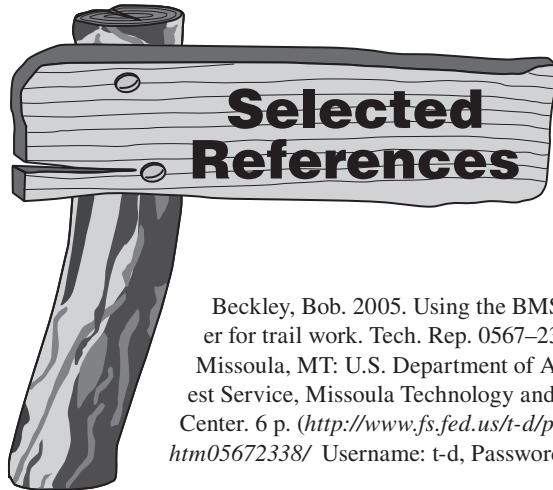
Grading Equipment—Several types of graders that can be pulled with ATVs work well for maintaining wider trails used by motorized traffic. MTDC has designed a rock rake to fit on an ATV for trail work.

An experienced operator can use small mechanized equipment to make wonderful singletrack trails. Such equipment also is great for constructing wider trails for motorized traffic and packstock.

A Web site showing a variety of small mechanized equipment and attachments for trail work can be found at: <http://www.fhwa.dot.gov/environment/equip/>.

Rock rake designed by MTDC

Mini Excavators—Mini excavators can excavate, tread and move material and rocks from place to place. They are even more popular with trail contractors than dozers, because dozers can only push material. Excavators can dig and move material. Mini excavators are available from many manufacturers.



Mini excavator

Trail Dozers—Trail-sized dozers are becoming more common for cutting singletrack trail. When an experienced operator follows a good design, the trails built by a dozer are impressive.

Sweco 480

Beckley, Bob. 2005. Using the BMS Micro-Blast-er for trail work. Tech. Rep. 0567-2338-MTDC. Missoula, MT: U.S. Department of Agriculture Forest Service, Missoula Technology and Development Center. 6 p. (<http://www.fs.fed.us/t-d/pubs/htmlpubs/htm05672338/> Username: t-d, Password: t-d)

Birchard, William, Jr.; Proudman, Robert D. 2000. Appalachian Trail design, construction, and maintenance. 2d ed. Harpers Ferry, WV: Appalachian Trail Conference. ISBN 1-917953-72-X. 237 p. (Copies for sale by calling 888-287-8673.)

Birkby, Robert C. 2005. Lightly on the land: the SCA manual of backcountry work skills. 2d ed. Student Conservation Association and The Mountaineers. ISBN 0-89886-4848-3. 304 p. (Copies for sale by calling 206-223-6303, ext 135.)

Davies, Mary Ann; Outka-Perkins, Lisa. 2006. Building mountain bike trails: sustainable singletrack. DVD. 0623-2D01-MTDC. Missoula, MT: U.S. Department of Agriculture Forest Service, Missoula Technology and Development Center. (Order the DVD from the Federal Highway Administration, <http://www.fhwa.dot.gov/environment/recreatrails/trailpub.htm>)

Demrow, Carl; Salisbury, David. 1998. The complete guide to trail building and maintenance. 3d ed. Boston, MA: Appalachian Mountain Club. ISBN 1-878239-54-6. 256 p. (Copies for sale by calling 800-262-4455.)

Didier, Steve; Herzberg, Diane. 1996. Stock-drawn equipment for trail work. Tech. Rep. 9623-2802-MTDC. Missoula, MT: U.S. Department of Agriculture Forest Service, Missoula Technology and Development Center. 22 p. (<http://www.fhwa.dot.gov/environment/fs-pubs/96232802/>)

Eriksson, Merv. 2000. Trail bridge catalog. Web site. 0023-2W01-MTDC. Missoula, MT: U.S. Department of Agriculture Forest Service, Missoula Technology and Development Center. (<http://www.fs.fed.us/t-d/bridges/> Username: t-d, Password: t-d)

Groenier, James Scott; Eriksson, Merv; Kosmalski, Sharon. 2006. A guide to fiber-reinforced polymer trail bridges. Tech. Rep. 0623-2824-MTDC. Missoula, MT: U.S. Department of Agriculture Forest Service, Missoula Technology and Development Center. 98 p. (<http://www.fs.fed.us/t-d/pubs/htmlpubs/htm06232824/> Username: t-d, Password: t-d)

Groenier, James Scott; LeBow, Stan. 2006. Preservative-treated wood and alternative products in the Forest Service. Tech. Rep. 0677-2809-MTDC. Missoula, MT: U.S. Department of Agriculture Forest Service, Missoula Technology and Development Center. 44 p. (<http://www.fs.fed.us/t-d/pubs/htmlpubs/htm06772809/> Username: t-d, Password: t-d)

Hallman, Richard. 1988 (rev. 2005). Handtools for trail work. Tech. Rep. 8823-2601-MTDC. Missoula, MT: U.S. Department of Agriculture Forest Service, Missoula Technology and Development Center. 54 p. (<http://www.fhwa.dot.gov/environment/fspubs/05232810/>)

International Mountain Bicycling Association. 2004. Trail solutions: IMBA's guide to building sweet singletrack. ISBN: 0-9755023-0-1. Boulder, CO: International Mountain Bicycling Association. 272 p.

Kilroy, Bill; Tour, Jim. 1998. Boulder buster: breaking rocks without explosives. 9867-2840-MTDC. Missoula, MT: U.S. Department of Agriculture Forest Service, Missoula Technology and Development Center. (<http://www.fhwa.dot.gov/environment/fspubs/98672840/>)

Kuhn, Tyler; Vachowski, Brian. 2006. Improved MTDC trail rake for ATVs. Tech. Rep. 0623-2320-MTDC. Missoula, MT: U.S. Department of Agriculture Forest Service, Missoula Technology and Development Center. 6 p. (<http://www.fhwa.dot.gov/environment/fspubs/06232320/>)

Meyer, Kevin G. 2002. Managing degraded off-highway vehicle trails in wet, unstable, and sensitive environments. Tech. Rep. 0223-2821-MTDC. Missoula, MT: U.S. Department of Agriculture Forest Service, Missoula Technology and Development Center. 48 p. (<http://www.fhwa.dot.gov/environment/fspubs/02232821/>)

Michael, David; Vachowski, Brian. 2004. Saws that sing: a guide to using crosscut saws. Tech. Rep. 0423-2822-MTDC. Missoula, MT: U.S. Department of Agriculture Forest Service, Missoula Technology and Development Center. 64 p. (<http://www.fhwa.dot.gov/environment/fspubs/04232822/>)

Miller, Warren. 1977 (rev. 2003). Crosscut saw manual. Tech. Rep. 7771-2508-MTDC. Missoula, MT: U.S. Department of Agriculture Forest Service, Missoula Technology and Development Center. 28 p. (<http://www.fhwa.dot.gov/environment/fspubs/77712508/>)

Monlux, Steve; Vachowski, Brian. 2000. Geosynthetics for trails in wet areas: 2000 edition. Tech. Rep. 0023-2838-MTDC. Missoula, MT: U.S. Department of Agriculture Forest Service, Missoula Technology and Development Center. 18 p. (<http://www.fhwa.dot.gov/environment/fspubs/00232838/>)

Mrkich, Dale; Oltman, J. 1984. Hand drilling and breaking rock for wilderness trail maintenance. Tech. Rep. 8423-2602-MTDC. Missoula, MT: U.S. Department of Agriculture Forest Service, Missoula Technology and Development Center. 26 p. (<http://www.fhwa.dot.gov/environment/fspubs/84232602/>)

Parker, Troy Scott. 2004. Natural surface trails by design: physical and human design essentials of sustainable, enjoyable trails. ISBN: 0-9755872-0. Natureshape LLC. (<http://www.natureshape.com>)

Steinholtz, Robert T.; Vachowski, Brian. 2007. Wetland trail design and construction. Tech. Rep. 0723-2804-MTDC. Missoula, MT: U.S. Department of Agriculture Forest Service, Missoula Technology and Development Center. 90 p. (<http://www.fhwa.dot.gov/environment/fspubs/07232804>)

Therrell, Lisa; Cole, David; Claassen, Vic; Davies, Mary Ann. 2006. Wilderness and backcountry site restoration guide. Tech. Rep. 0623-2815-MTDC. Missoula, MT: U.S. Department of Agriculture Forest Service, Missoula Technology and Development Center. 394 p. (<http://www.fs.fed.us/t-d/pubs/htmlpubs/htm06232815> Username: t-d, Password: t-d)

U.S. Department of Agriculture Forest Service. 1999. Health and safety code handbook. FSH 6709.11. Washington, DC: U.S. Department of Agriculture Forest Service. 514 p. (<http://www.fs.fed.us/im/directives/fsh/6709.11/FSH6709.pdf>)

U.S. Department of Agriculture Forest Service. Forest Service trail reports 2004. CD with 28 reports in HTML and PDF formats. 0423-2C03-MTDC. Missoula, MT: U.S. Department of Agriculture Forest Service, Missoula Technology and Development Center. (<http://www.fhwa.dot.gov/environment/rectrails/trailpub.htm/>)

U.S. Department of Agriculture Forest Service. 1991. Trails management handbook. FSH 2309.18. Washington, DC: U.S. Department of Agriculture Forest Service. (http://www.fs.fed.us/cgi-bin/Directives/get_dirs/fsh?2309.18)

U.S. Department of Agriculture Forest Service. 1996. Forest Service National trail drawings and specifications. EM-7720-103. Washington, DC: U.S. Department of Agriculture Forest Service. (<http://www.fs.fed.us/ftproot/pub/acad/dev/trails/trails.htm>)

U.S. Department of Agriculture Forest Service. 2005. Signs and poster guidelines for the Forest Service. EM-7100-15. Washington, DC: U.S. Department of Agriculture Forest Service. (Reference copies available at Forest Service offices Nationwide.)

Vachowski, Brian. 1995. Gravel bags for packstock. Tech. Rep. 9523-2840-MTDC. Missoula, MT: U.S. Department of Agriculture Forest Service, Missoula Technology and Development Center. 9 p. (<http://www.fhwa.dot.gov/environment/fspubs/95232840/>)

Vachowski, Brian; Maier, Neal. 1998. Off-highway vehicle trail and road grading equipment. Tech. Rep. 9823-2837-MTDC. Missoula, MT: U.S. Department of Agriculture Forest Service, Missoula Technology and Development Center. 20 p. (<http://www.fhwa.dot.gov/environment/fspubs/98232837/>)

Watson, L'Tanga. 2005. Anchoring trail markers and signs in rocky areas. Tech. Rep. 0523-1202-SDTDC. San Dimas, CA: U.S. Department of Agriculture Forest Service, San Dimas Technology and Development Center. 13 p. (<http://www.fs.fed.us/eng/pubs/pdf/05231202.pdf>)

Weisgerber, Bernie; Vachowski, Brian. 1999. An ax to grind: a practical ax manual. Tech. Rep. 9923-2823-MTDC. Missoula, MT: U.S. Department of Agriculture Forest Service, Missoula Technology and Development Center. 60 p. (<http://www.fhwa.dot.gov/environment/fspubs/99232823/>)

Wernex, Joe. 1994. Off-highway motorcycle & ATV trails guidelines for design, construction, maintenance and user satisfaction. 2d ed. Pickerington, OH: American Motorcyclist Association. 58 p. (<http://www.ama-cycle.org/legisltn/downloads/WernexReport.pdf>)

Zeller, Janet; Doyle, Ruth; Snodgrass, Kathleen. 2006. Accessibility guidebook for outdoor recreation and trails. Tech. Rep. 0623-2801-MTDC. Missoula, MT: U.S. Department of Agriculture Forest Service, Missoula Technology and Development Center. (<http://www.fs.fed.us/recreation/programs/accessibility/htmlpubs/htm06232801/>)

Library Card

Hesselbarth, Woody; Vachowski, Brian; Davies, Mary Ann. 2007. Trail construction and maintenance notebook: 2007 edition. Tech. Rep. 0723-2806-MTDC. Missoula, MT: U.S. Department of Agriculture Forest Service, Missoula Technology and Development Center. 166 p.

This notebook describes techniques used to construct and maintain trails. It is written for trail crew workers and is intended to be taken along on work projects. Numerous illustrations help explain the main points. The notebook was printed in 1996 and has been revised slightly during three reprintings. This edition has rearranged and consolidated information throughout the guidebook. Trail construction techniques and references have been updated.

Keywords: climbing turns, drainage, fords, grade reversals, puncheon, reclamation, signs, switchbacks, trail construction, trail crews, trail maintenance, training, turnpikes

Produced by:

USDA Forest Service, Missoula Technology and Development Center
5785 Hwy. 10 West
Missoula, MT 59808-9361
Phone: 406-329-3978
Fax: 406-329-3719

You can order a copy of this document using the order form on the FHWA's Recreational Trails Program Web site at: <http://www.fhwa.dot.gov/environment/recreatrails/trailpub.htm>

For additional information about trail construction and maintenance, contact Mary Ann Davies at MTDC:

Phone: 406-329-3981
Fax: 406-329-3719
E-mail: mdavies@fs.fed.us

Electronic copies of MTDC's documents are available on the Internet at:
<http://www.fs.fed.us/eng/t-d.php>

Forest Service and Bureau of Land Management employees can search a more complete collection of MTDC's documents, videos, and CDs on their internal computer networks at:

<http://fsweb.mtdc.wo.fs.fed.us/search/>

Inside Back Cover

Metric Conversions

To convert from this unit	To this unit	Multiply by
inch	millimeter	25.4*
inch	centimeter	2.54*
foot	meter	0.3048*
yard	meter	0.9144*
mile	kilometer	1.6
millimeter	inch	0.039
centimeter	inch	0.394
centimeter	foot	0.0328
meter	foot	3.28
meter	yard	1.09
kilometer	mile	0.62
acre	hectare (square hectometer)	0.405
square kilometer	square mile	0.386*
hectare (square hectometer)	acre	2.47
ounce (avoirdupois)	gram	28.35
pound (avoirdupois)	kilogram	0.45
ton (2,000 pounds)	kilogram	907.18
ton (2,000 pounds)	megagram (metric ton)	0.9
gram	ounce (avoirdupois)	0.035
kilogram	pound (avoirdupois)	2.2
megagram	ton (2,000 pounds)	1.102
ounce (U.S. liquid)	milliliter	30
cup	milliliter	247
cup	liter	0.24
gallon	liter	3.8
quart	liter	0.95
pint	liter	0.47
milliliter	ounce (U.S. liquid)	0.034
liter	gallon	0.264
liter	quart	1.057
degrees Fahrenheit	degrees Celsius	$(^{\circ}\text{F} - 32) \div 1.8$
degrees Celsius	degrees Fahrenheit	$(^{\circ}\text{C} \times 1.8) + 32$

*The conversion factors with asterisks are exact (the others give approximate conversions).

Back Cover

Metric Comparisons

- A millimeter, one-thousandth of a meter, is about the thickness of a dime.
- One inch is just $\frac{1}{64}$ inch longer than 25 millimeters (1 inch = 25.4 millimeters).
- 150 millimeters is the length of a dollar bill.
- One foot is about $\frac{3}{16}$ inch longer than 300 millimeters (12 inches = 304.8 millimeters).
- A meter is a little longer than a yard, about a yard plus the width of this notebook.

1 kilometer (about five-eighths of a mile)

|<----->|

1 mile

|<----->|

Chapter 3
Environmental Guidelines For
WATERCOURSE CROSSINGS

Water Resources Division
Water Rights, Investigations, and Modelling Section

November 29, 2018

3.0 WATERCOURSE CROSSINGS

Table of Contents

	Page
3.1 General	1
3.2 Selection of Route and Crossing Site	1
3.3 Types of Crossings.....	2
3.3.1 Distinction Between Culverts and Bridges	2
3.3.2 Preference of Bridges Over Culvert Crossings.....	3
3.3.3 Timber "Culverts"	3
3.3.4 Choose a Type of Crossing Appropriate for the Site Conditions	3
3.3.5 Temporary Crossings	4
3.3.6 Choosing Between a Fording, or a Structural Crossing	4
3.4 Design Flow and Water Levels	5
3.4.1 Return Period.....	5
3.4.2 Design Data	5
3.4.3 Site Inspection	6
3.5 General Installation Procedures	6
3.5.1 Low Flow Conditions.....	7
3.5.2 Reduce Time Spent With In-Stream Work.....	7
3.5.3 Watercourse Crossings and Fish Habitat	7

3.0 WATERCOURSE CROSSINGS

3.1 General

This section consists of general information and preferred methods for planning and installing watercourse crossings. For the purpose of these guidelines watercourse crossings are placed in three categories:

- Bridges, Culverts and Fording

More specific technical information and recommended practices for installing these types of watercourse crossings are contained in:

- Chapter 4 - Bridges
- Chapter 5 - Culverts
- Chapter 6 - Fording

Any watercourse crossing has the potential to alter the existing natural flow regime for the entire range of low to high flow conditions. The alteration of natural stream flow, if carried out improperly, can result in many types of serious problems. Improperly installed watercourse crossings can result in extensive loss and damage to public and private property, danger to human life, as well as damage to the environment in general through flooding, erosion, and washouts.

While installations such as culverts always alter natural flow it is preferred that watercourse crossings be appropriately designed to alter the natural flow regime as little as possible. The final decision as to permitting any stream alterations through the installation of a crossing rests with the Minister of the Department.

3.2 Selection of Route and Crossing Site

In planning linear facilities such as roads, pipelines, railways or transmission lines which require crossings of watercourses, consideration is required in the route selection and corridor location to mitigate the impact of the development on water resources.

Route selection should be made to:

- Minimize the number of watercourse crossings.
- Avoid wetlands or floodplain areas.
- Maintain substantial buffer strips on all bodies of water.

3.0 WATERCOURSE CROSSINGS

In selecting a site for a proposed major watercourse crossing, it is important to examine the physical characteristics of the watercourse and its drainage basin and to identify the site which will provide the best features and conditions for a crossing.

The site selected should enable construction of an economical and easily maintained crossing, be suitable for routing and approach requirements, consider the nature of the waterway and its environment, and minimize the use of such training works as may be necessary to deal with adverse natural features.

Where there is a choice between alternative crossing sites on a watercourse the crossing should be located:

- where the stream is straight, unobstructed and well defined;
- on an existing right-of-way if one exists;
- where stable geological and soil conditions are present;
- where a minimum of scour, deposition or displacement of sediments are expected to occur at or near a crossing;
- where possible effects on other existing bridges and hydraulic structures can be avoided;
- where it is possible to minimize the risk of damage from environmental hazards such as floods, landslides, or avalanches;
- where aesthetic conditions are favourable;
- away and preferably downstream from areas such as fish spawning sites or water use intakes.

3.3 Types of Crossings

3.3.1 Distinction Between Culverts & Bridges

For the most part, the term culvert has become synonymous with galvanized corrugated steel pipe products although concrete pipe culverts still find limited use mostly for smaller size drainage installations. Installations which maintain the original natural stream bed are not considered to be culverts in these guidelines. (See definitions in Appendix "culvert", "bridge"). Poured in place concrete structures which form two sides and a top over a watercourse but maintain a natural channel bed have been referred to elsewhere as "box culverts". The term is a misnomer as these structures more closely resemble bridges in their construction, installation procedures, and hydraulic effects on flow in the channel. Similarly, structural plate arches, although they utilize corrugated steel, are considered for the purpose of these guidelines to be classed as bridge installations as they require concrete foundations and allow a natural channel bed. For further information on concrete box structures or structural steel plate arch structures refer to *Chapter 4, "Bridges"*.

3.0 WATERCOURSE CROSSINGS

3.3.2 Preference of Bridges over Culvert Crossings

Bridges and bridge-type structures are environmentally preferred to culverts as a means of stream crossing. The following reasons are cited:

- Culvert installations usually result in the loss of a section of natural stream bed, whereas bridges leave the channel bed relatively unaltered.
- Confining stream flow to culverts can result in an extensive alteration of the flow regime which can result in problems such as erosion, or scouring at outlet or deposition of material at the inlet of the installation.
- Bridges usually provide better capacity to accommodate high flows than would a culvert crossing. Inadequate capacity can result in serious problems such as washouts and flooding.
- Bridges provide better inlet and outlet conditions than culverts thereby allowing safer passage of debris without causing constrictions and blockages.
- Culverts often create total or partial barriers to fish migration which is rarely a problem in bridge installations.

3.3.3 Timber "Culverts"

The use of logs or timber to construct an enclosed structure under road fill also known as timber culverts, is not considered an acceptable method of stream crossing. Such structures do not provide long term service and their final demise usually results in the collapse of the road material into the stream with such problems as siltation and deposition downstream, washout of the road, or the blocking of the stream with associated flooding.

3.3.4 Choose a Type of Crossing Appropriate for the Site Conditions

Prior to the construction of watercourse crossings careful study and examination of the environmental implications of each proposed crossing should be undertaken.

The decision to install a bridge or culverts for a proposed crossing should be made only after examining the hydraulic implications of the proposed structure with respect to the hydrology, physical conditions and features of the proposed site. Generally these factors include but are not limited to:

- Quantity or volume of peak flows
- Depth of flow

3.0 WATERCOURSE CROSSINGS

- Flow velocity
- Low flow characteristics

This will provide an indication of the appropriateness and ability of the structure to perform satisfactorily under those particular conditions identified. These are the determining factors to be considered in deciding between a bridge or culvert installation and the decision should not be based primarily on economic considerations.

3.3.5 Temporary Crossings

These guidelines have not made a substantial distinction between permanent and temporary watercourse crossings as all installations are expected to provide satisfactory performance during the intended period of use. In this regard the design capacity of a crossing may vary from an installation which is to be used only for several weeks during low flow summer conditions and subsequently removed, to installations which must safely accommodate high spring runoff or provide many years of satisfactory service for a major highway.

Where watercourse crossings are installed to provide service for a period of less than one year and the installations are not required to pass peak spring runoff, the following guidelines should be followed:

- The installation should provide adequate capacity to safely accommodate design flows without causing erosion, flooding, or other environmental problems.
- The installation should be carried out with the least amount of disturbance to the channel bed, banks, and adjacent vegetation and property.
- Upon completion of its intended function, the crossing and all associated works and material should be removed from the vicinity of the channel.
- Site restoration involving revegetation and stabilization of all disturbed areas should be carried out to return the channel to its previous condition. Further details on this are contained in *Chapter 11, "Restoration and Stabilization"*.

3.3.6 Choosing Between a Fording, or a Structural Crossing

There are a number of environmental factors to consider in deciding whether to ford a watercourse or provide an installation such as a bridge or culvert.

3.0 WATERCOURSE CROSSINGS

If a location with stable channel bed and banks has been identified, the flow is not too deep, and very infrequent use is anticipated, fording may be an acceptable alternative to installing a bridge or culvert.

In some instances the installation of a bridge or culvert and its subsequent removal would result in greater channel disruption and more potential for environmental problems than the installation of a fording site.

One of the initial factors to consider is the frequency and period of use of the proposed crossing. In instances where the fording would only involve crossing a watercourse to gain access into an area and subsequent return from the area, (two fording operations per piece of equipment), the installation of bridges or culverts may not be warranted provided the fording would not create environmental problems or conflict with downstream water users.

Details regarding the installation of fording sites and guidelines for their use are contained in *Chapter 6, "Fording"*.

3.4 Design Flow and Water Level

To design and construct an adequate watercourse crossing and provide appropriate environmental mitigation, it is essential that the flow regime at the crossing location be determined. The important flow characteristics are the timing and magnitude of the annual peak and low flow period, the range of flows which may be encountered, and flow velocities. Also of concern in some regions are the dates of freeze-up and break-up and the potential for ice blockage of culverts.

3.4.1 Return Period

The streamflow characteristic of major importance is the peak or flood flow usually related to a certain probability of being equalled or exceeded in terms of a "return period". Determining a design peak flow with a certain return period allows one to assess the probability that a crossing structure could be damaged or destroyed within a selected time period. For example, a 50-year return period peak flow will be equalled or exceeded, on the average, once in a 50-year period. The probability or risk of a 50-year return period peak flow occurring in the 25-year "life" of a structure is about 40%; the probability of a 100-year return period event occurring is about 22%.

3.4.2 Design Data

The main source of data for the analyses used to estimate peak flow is the hydrometric station network operated by Water Survey of Canada under the cost shared Canada - Newfoundland Hydrometric Surveys Agreement. The peak flow magnitude can be estimated by regionalization methods, or empirical formulae which relate peak flow to precipitation input. The method

3.0 WATERCOURSE CROSSINGS

used will depend on the climate, watershed characteristics (especially drainage area) and the data available.

3.4.3 Site Inspection

Much information required for the design of a stream crossing can only be obtained from a site inspection. Physical measurements of the stream include width, depth and flow velocity. Such measurements must include up- and downstream sections and these must be compared in terms of elevation in order to determine the channel slope. In addition a field inspection should establish:

- type and grading of bed material,
- existence of shoals and their composition,
- the material forming the banks,
- vegetation on the banks,
- steepness of banks and evidence of bank erosion,
- debris marks on shrubs, trees or banks which may indicate the water level of recent floods,
- elevation of ice scars.

Much of this information is vital to confirm the appropriateness of the hydraulic as well as the structural design.

3.5 General Installation Procedures

Design and the actual installation of a watercourse crossing are separate components often handled by different persons or agencies (engineers/owners vs. contractors). Invariably, it is necessary to consider the installation methods in the design of the crossing, thus a team effort is needed to ensure that a project is carried out in an environmentally acceptable manner. A crossing design must be such that it can have a realistic chance of being installed with a minimum of environmental disruption.

The contractor usually has the sole responsibility for the day to day construction effort. In this regard it usually falls upon the contractor to ensure that pollution, siltation, drainage problems and general disturbance be minimized. Each crossing installation is unique and a well-planned installation procedure as well as rules, specifications and regulations governing the site work are essential. More details about construction practices are given in *Chapter 10, "General Construction Practices"*.

3.0 WATERCOURSE CROSSINGS

3.5.1 Low Flow Conditions

It is preferred that all watercourse crossings be installed during times of low flow conditions during the summer months. Where flows must be diverted or confined to allow work to proceed in a portion of the channel, high flow conditions can create problems of erosion and flooding. Watercourse crossings installed during the summer months also will allow adequate time for stabilization and revegetation of disturbed areas before higher flows of the fall months occur.

3.5.2 Reduce Time Spent With In-Stream Work

The installation of any watercourse crossing should be carried out as quickly as possible to prevent prolonged channel disruption or exposure of vulnerable areas to erosion. The extent of channel disruption and other environmental problems such as siltation often relates directly to the amount of time spent with instream works.

3.5.3 Watercourse Crossings and Fish Habitat

The installation of watercourse crossings has the potential to impede or block fish migration and destroy fish populations or fish habitat. In particular, culvert installations if improperly installed can create structural and flow velocity barriers to the passage of fish. The installation of bridges, culverts, and fording sites if improperly carried out can result in siltation and pollution which can kill fish or incubating eggs and ruin spawning locations.

The installation of watercourse crossings in areas of fish habitat should be scheduled to avoid instream work during periods of high environmental sensitivity such as fish migration, spawning, fish egg incubation and fry emergence. The installation should not impede fish migration or effect fish or incubating eggs.

The Federal Fisheries Act contains clauses which govern the alteration of fish habitat. Therefore, approval from Fisheries and Oceans, Canada, may be required in addition to approval from the Department.