

Appendix 2-E

Project Nujio'qonik: Baseline Ambient Air Quality Monitoring Study

Project Nujio'qonik: Amendment to the Environmental Impact Statement

**Project Nujio'qonik: Baseline
Ambient Air Quality Monitoring
Study**

Final Report

January 27, 2024

Prepared for:

World Energy GH2 LP

Prepared by:

Stantec Consulting Ltd.
141 Kelsey Drive
St. John's, NL A1B 0L2

File: 121417575

PROJECT NUJIO'QONIK: BASELINE AMBIENT AIR QUALITY MONITORING STUDY

This document entitled Project Nujio'qonik, Baseline Ambient Air Quality Monitoring Study was prepared by Stantec Consulting Limited ("Stantec") for the account of World Energy GH2 LP, (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Table of Contents

EXECUTIVE SUMMARY	I
ABBREVIATIONS	IV
1.0 INTRODUCTION	1
2.0 SCOPE AND OBJECTIVES.....	3
2.1 AMBIENT AIR QUALITY MONITORING OBJECTIVES.....	3
2.2 APPLICABLE REGULATIONS AND GUIDELINES	3
2.3 KEY COMPONENTS ASSESSED.....	4
2.3.1 Meteorology	4
2.3.2 Air Contaminants of Interest	5
2.4 EXISTING CONDITIONS	6
3.0 METHODOLOGY.....	12
3.1 PRE-MONITORING PLANNING.....	12
3.1.1 Site Selection	13
3.2 AMBIENT AIR MONITORING LOCATIONS	13
3.3 EQUIPMENT SUMMARY AND SAMPLING METHODS.....	15
3.3.1 PM ₁₀	16
3.3.2 PM _{2.5}	16
3.3.3 Gaseous Compounds	16
4.0 AMBIENT AIR QUALITY MONITORING RESULTS	17
4.1 METEOROLOGICAL DATA	17
4.2 SAMPLING RESULTS	21
4.2.1 Particulate Matter smaller than 10 microns (PM ₁₀)	21
4.2.2 Particulate Matter smaller than 2.5 microns (PM _{2.5}).....	24
4.2.3 Nitrogen Dioxide, Sulphur Dioxide, and Ammonia	27
5.0 SUMMARY AND DISCUSSION OF RESULTS	31
6.0 REFERENCES	33

PROJECT NUJIO'QONIK: BASELINE AMBIENT AIR QUALITY MONITORING STUDY

LIST OF TABLES

Table 2-1	Applicable Regulatory Criteria for Ambient Air Monitoring	4
Table 2-2	Variables Measured at the Stephenville Airport Weather Station	5
Table 2-3	NO _x and NO ₂ Concentrations - Grand Falls-Windsor Air Monitoring Station - 2021 and 2022.....	7
Table 2-4	SO ₂ Concentrations - Grand Falls-Windsor Air Monitoring Station - 2021 and 2022.....	8
Table 2-5	PM _{2.5} and PM ₁₀ Concentrations - Grand Falls-Windsor Air Monitoring Station - 2021 and 2022.....	9
Table 2-6	PM _{2.5} and TPM Concentrations - CEMEX Air Monitoring Station - 2021 and 2022.....	10
Table 3-1	Summary of Instrumentation and Filter Media used during Monitoring Program.....	15
Table 3-2	Sampler Calibrations.....	15
Table 4-1	Meteorological Conditions - Stephenville Airport Sampling 2023.....	18
Table 4-2	Meteorological Conditions – West Bay Sampling 2023	19
Table 4-3	Ambient Air Monitoring Results for PM ₁₀ – Stephenville Airport 2023.....	22
Table 4-4	Ambient Air Monitoring Results for PM ₁₀ – West Bay 2023	23
Table 4-5	Ambient Air Monitoring Results for PM _{2.5} – Stephenville Airport 2023.....	25
Table 4-6	Ambient Air Monitoring Results for PM _{2.5} – West Bay 2023.....	26
Table 4-7	Ambient Air Monitoring Results for NO ₂ , SO ₂ , and NH ₃ – Stephenville Airport 2023	28
Table 4-8	Ambient Air Monitoring Results for NO ₂ , and SO ₂ – West Bay 2023	29

LIST OF FIGURES

Figure 1.1	Proposed Project Features and Location	2
Figure 3.1	2023 WEGH2 Air Quality Monitoring Locations	14
Figure C 1	Wind Roses for June Monitoring Events – Stephenville Airport	C.1
Figure C 2	Wind Roses for August Monitoring Events – Stephenville Airport.....	C.2
Figure C 3	Wind Roses for November Monitoring Events – Stephenville Airport	C.3
Figure C 4	Wind Roses for June Monitoring Events – West Bay	C.4
Figure C 5	Wind Roses for August Monitoring Events – West Bay	C.5
Figure C 6	Wind Roses for November Monitoring Events – West Bay	C.6

LIST OF PHOTOS

Photo 1	August Monitoring Setup at the Stephenville Airport	D.1
Photo 2	November Monitoring Setup at the Stephenville Airport	D.2

LIST OF APPENDICES

Appendix A	Laboratory Analysis Reports
Appendix B	Calibration Documents
Appendix C	Wind Rose Plots
Appendix D	Site Location Photos

Executive Summary

Stantec Consulting Ltd. (Stantec) was contracted by World Energy H2 LP (WEGH2) to conduct an ambient air quality baseline study in 2023, near Stephenville, on the west coast of the Island of Newfoundland where WEGH2 is proposing to develop a new hydrogen and ammonia production facility and wind farm (Project Nujo'qonik).

This baseline study was conducted to support the ongoing planning and development of the Project, and the environmental assessment (EA). The NL Department of Environment and Climate Change (NLDECC) released the Final Environmental Impact Statement (EIS) Guidelines for the Project on December 1, 2022. The EIS Guidelines identify the information required to support the EA including baseline studies of the atmospheric environment, including air quality. The purpose of the ambient air monitoring was to provide information on the baseline conditions (i.e., existing conditions) of air quality in the vicinity of the Project as required under section 4.3.1 of the EIS Guidelines.

Air quality refers to the composition of ambient or outdoor air, including the presence and quantity of air contaminants in the atmosphere, that may have adverse effects on vegetation, wildlife, or human health. The applicable provincial ambient air quality legislation is provided in the Newfoundland and Labrador Air Pollution Control Regulations (NL APCR), amended in 2022. The Regulations contain Ambient Air Quality Standards (AAQS) for acceptable concentrations of various air contaminants over different averaging periods. Federally, the Canadian Ambient Air Quality Standards (CAAQS) were developed by the Canadian Council of Ministers of the Environment (CCME) and contain standards for managing specific air contaminants.

Baseline ambient air quality monitoring was conducted at two separate locations, one at the Stephenville Airport (SA location), and one in the community of West Bay (WB location). The monitoring completed during 2023 was split into four separate monitoring events, one in spring, two in summer, and one in fall/winter to monitor seasonal variability of contaminants. Particulate Matter less than 10 microns (PM₁₀), Particulate Matter less than 2.5 microns (PM_{2.5}), Nitrogen Dioxide (NO₂), and Sulphur Dioxide (SO₂) were measured at both locations. Ammonia (NH₃) was only measured at the Stephenville Airport, near the proposed ammonia facility.

PM₁₀ and PM_{2.5} were monitored in West Bay and at the Stephenville Airport for three consecutive 24-hour periods during June, August, and November. NO₂ and SO₂ were monitored using passive air samplers in West Bay and at the Stephenville Airport for a period of two weeks during each season (June, September, and November). NH₃ was measured using passive air samplers at the Stephenville Airport for a period of two weeks during June, August, and November. Baseline ambient air quality monitoring was conducted for these air contaminants as they are considered most relevant to characterize the baseline conditions before the construction of the wind farms and ammonia/hydrogen plant.

PROJECT NUJIO'QONIK: BASELINE AMBIENT AIR QUALITY MONITORING STUDY

The results of the field monitoring at the sites, summarized in Table E.1 below, are compared to both the NL AAQS and the CAAQS in this report. The results of the field monitoring are also compared with recent ambient air quality monitoring from the most representative provincially run air monitoring station. This air monitoring station is located in Grand Falls-Windsor, approximately 220 kilometers from the Project Area. The existing conditions for air quality are characterized using a combination of publicly available data and literature, as well as the results of the ambient air monitoring that was conducted.

Table E. 1 Summary of 2023 Monitoring Program Results

Sample ID	Units	Average Concentration Measured at World Energy Site	Grand Falls-Windsor Provincial Air Monitoring Station Average Concentration during Monitoring ^B	Regulatory Criteria for the 24-hour Time Averaging Period	
				Provincial Guideline (NL AAQS)	Federal Guideline (CAAQS)
SA – PM ₁₀	µg/m ³	<10	11	50	-
WB – PM ₁₀	µg/ m ³	<15	10	50	-
SA – PM _{2.5}	µg/ m ³	2.8	3.2	25	27
WB – PM _{2.5}	µg/ m ³	4.7	3.2	25	27
SA – NO ₂	ppb	<0.7 ^C	1.1 ^A	106	-
	µg/ m ³	<1.3 ^C		199	
WB – NO ₂	ppb	<0.2 ^D	1.2 ^A	106	-
	µg/ m ³	<0.38 ^D		199	
SA – SO ₂	ppb	0.2	N/A	115	-
	µg/ m ³	0.5		301	
WB – SO ₂	ppb	<0.2	N/A	115	-
	µg/ m ³	<0.5		301	
SA – NH ₃	ppb	< 0.2	N/A	144	-
	µg/ m ³	<0.14		101	

Notes:

A NO₂ data unavailable for November sampling, averages are calculated with June and September sampling.
B Raw monitoring data from Grand Falls-Windsor provided by Barrie Lawrence of the NL ECC.
C November sample was not blank-adjusted due to lab error, value conservatively kept in average.
D NO₂ sample media compromised by lab, averages are calculated with June and September sampling results
SA Stephenville Airport
WB West Bay
“-“ Indicates no federal criteria for the 24-hour time averaging period
N/A Indicates contaminant not monitored or data unavailable during sampling period
µg/ m³ Micrograms per cubic meter
ppb Parts per billion
NL AAQS Newfoundland and Labrador Ambient Air Quality Standards
CAAQS Canadian Ambient Air Quality Standards
Averages are reported as “less than” where some of the tests were below the minimum detection limit of the laboratory

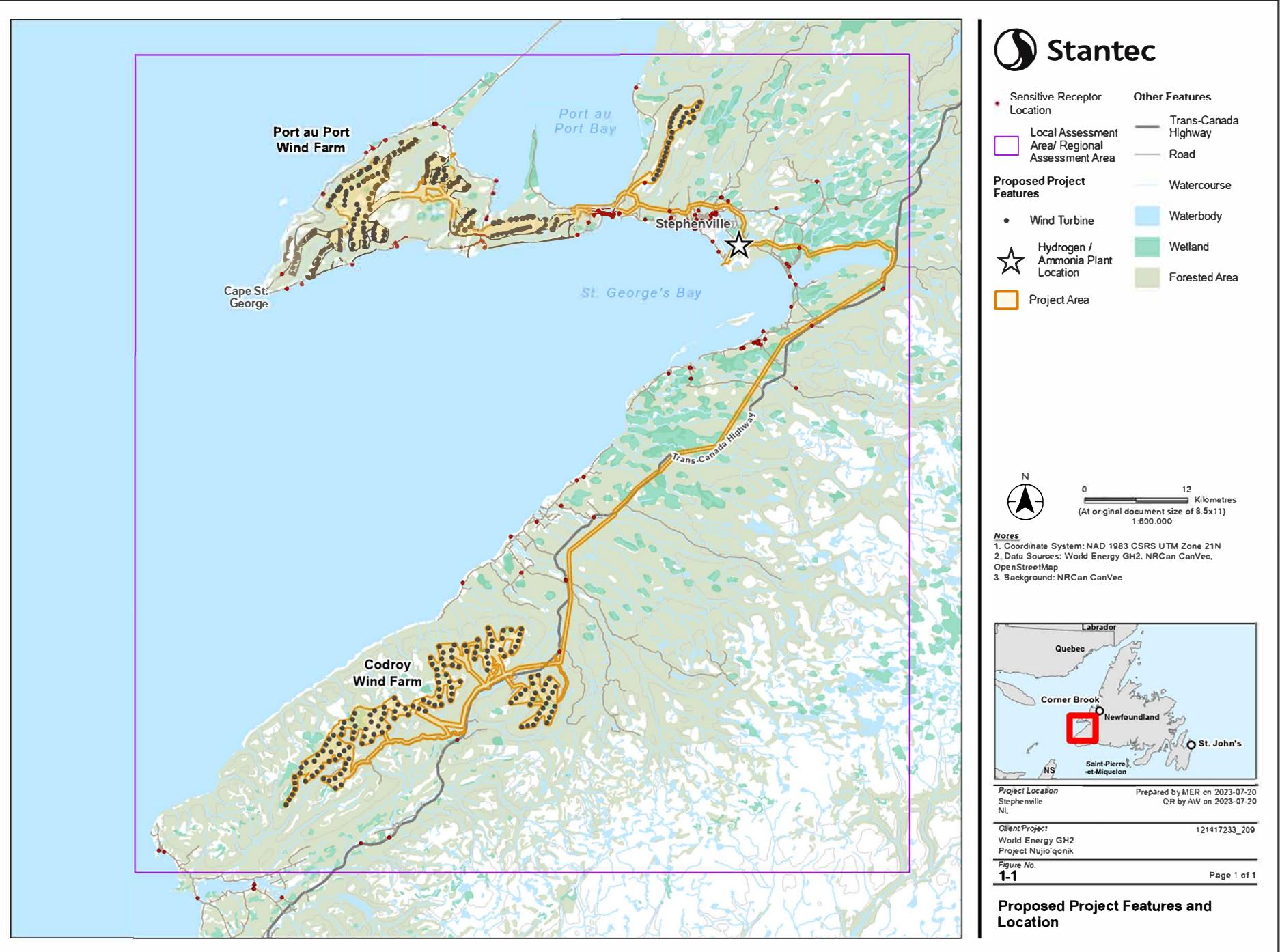
PROJECT NUJIO'QONIK: BASELINE AMBIENT AIR QUALITY MONITORING STUDY

None of the measured values exceeded the NL AAQS or the CAAQS during the sampling program. The data collected during 2023 are relatively consistent with the reference values used in the EA and indicate the background concentrations used in the EA are sufficiently representative of the background air quality in the area. This baseline report presents a summary of the applicable regulations, existing air quality conditions, sampling methodology, monitoring activities, meteorological data during sampling, and a detailed discussion on the findings of the 2023 ambient air monitoring program.

Abbreviations

AAQS	Ambient Air Quality Standards
AML	Atlantic Minerals Limited
AQMS	Air Quality Management System
AZMF	Air Zone Management Framework
BV	Bureau Veritas
CAAQS	Canadian Ambient Air Quality Standards
CCME	Canadian Council of Ministers of the Environment
CO	Carbon monoxide
EA	Environmental Assessment
EIS	Environmental Impact Statement
Hi-Vol	High Volume
km	Kilometer
km/hr	Kilometers per hour
kPa	Kilopascals
m	Meter
m ³	Cubic meter
m/s	Meters per second
MSC	Meteorological Services of Canada
NAPS	National Air Pollution Surveillance
NH ₃	Ammonia
NL	Newfoundland and Labrador
NL APCR	Newfoundland and Labrador Air Pollution Control Regulations
NL EEC	Newfoundland and Labrador Department of Environment and Climate Change
NPRI	National Pollutant Release Inventory
NO	Nitric oxide
NO _x	Nitrogen oxides
NO ₂	Nitrogen dioxide
O ₃	Ozone
PM _{2.5}	Particulate matter less than 2.5 micrometers in diameter
PM ₁₀	Particulate matter less than 10 micrometers in diameter
ppb	Parts per billion
Project	Project Nujio'qonik
Stantec	Stantec Consulting Inc.
SO ₂	Sulphur dioxide
TPM	Total particulate matter
µg/ m ³	Micrograms per cubic meter
US EPA	United States Environmental Protection Agency
WEGH2	World Energy GH2 LP

1.0 INTRODUCTION


World Energy GH2 LP (WEGH2) is proposing to develop a new hydrogen and ammonia production facility and wind farm (Project Nujio'qonik, hereafter the “Project”) on the west coast of the island of Newfoundland, in the Province of Newfoundland and Labrador (NL) (Figure 1-1). The Project involves the development, construction, operation and maintenance, and eventual decommissioning and rehabilitation of two onshore wind farms and a hydrogen-ammonia production plant powered by renewable wind energy.

The Project is subject to provincial environmental assessment (EA) requirements under the NL *Environmental Protection Act* and associated Environmental Assessment Regulations. The NL Department of Environment and Climate Change (NL ECC) released the Final Environmental Impact Statement (EIS) Guidelines for the Project on December 1, 2022. The EIS Guidelines identify the information required to support the EA including baseline surveys of the terrestrial environment. As per section 4.3.1 (Atmospheric Environment) of the Guidelines, pre-construction baseline surveys for the atmospheric environment are required in suitable biophysical and socio-economic environments that could be affected by the Project. On August 22, 2023, WEGH2 filed an EIS with the NL ECC assessing potential Project and cumulative effects. It was indicated in Appendix BSA-1 Atmospheric Baseline Study of the EIS that an air quality field program was on-going and that the data would be collected and presented in a supplementary report. This baseline air quality report is being submitted as the supplementary report to satisfy that commitment.

Stantec Consulting Ltd. (Stantec) was retained by WEGH2 to conduct pre-construction surveys for each of the seasonal variations (spring, summer, and fall/winter) at the Stephenville Airport (representative of the Stephenville area near the location of the hydrogen-ammonia production plant) and in West Bay (representative of the Port au Port area, near the location of some of the wind turbine sites). This report provides baseline information on ambient air quality in the immediate area to support the Environmental Assessment (EA) of the onshore wind farms and the hydrogen-ammonia production plant.

Ambient air quality monitoring was completed during 2023 over four separate monitoring events to monitor seasonal variability of the air contaminants. Particulate Matter less than 10 microns (PM_{10}), and Particulate Matter less than 2.5 microns ($PM_{2.5}$) were measured in June, August, and November in Stephenville and West Bay. Nitrogen Dioxide (NO_2), and Sulphur Dioxide (SO_2) were measured in June, September, and November in Stephenville and West Bay. Ammonia (NH_3) was only monitored in Stephenville in June, August, and November. The ambient air monitoring locations were finalized in consultation with WEGH2, in consideration of the location of project components, sensitive receptors, best practice siting requirements for ambient monitoring and of secure locations for ambient air monitor installation. The samplers for particulate matter components were installed and scheduled to run for three periods of 24 hours during each season to allow for sufficient time to measure baseline ambient air quality levels during favourable meteorological conditions (i.e., no rain and low winds). The passive air samplers were deployed for a period of two weeks during each seasonal monitoring event. This report presents the findings of the 2023 ambient air monitoring program.

Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stanleec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stanleec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and completeness of the data.

2.0 SCOPE AND OBJECTIVES

2.1 AMBIENT AIR QUALITY MONITORING OBJECTIVES

The objectives of the 2023 ambient air quality monitoring program were to:

- Gather project specific baseline ambient air quality data at Project locations at the Stephenville Airport and in West Bay (representative of the Port au Port area) to support the ongoing environmental assessment of the Project.
- Conduct ambient air monitoring to cover the seasonal variations – Spring (June), Summer (August), and Fall/Winter (November).
- Collect ambient monitoring data for air contaminants most likely to be emitted from the Project in notable quantities during construction or operation.

The ambient air quality monitoring program described and reported on herein was developed in consideration of the above noted objectives.

2.2 APPLICABLE REGULATIONS AND GUIDELINES

The Newfoundland and Labrador Air Pollution Control Regulations (NL APCR), published under the *Environmental Protection Act*, are used to regulate air quality in the province. The NL APCR were amended in 2022 and contain Ambient Air Quality Standards (AAQS) for acceptable concentrations of various air contaminants over periods of time (1-hour, 3-hour, 8-hour, 24-hour, and annual standards) in Schedule A of the Regulations. The AAQS published in the NL APCR are used to maintain air quality in the province by controlling/regulating the release of air contaminants from various sources to the atmosphere. This is done to ensure that any activities releasing air contaminants to the atmosphere do not cause the ambient concentrations to exceed the ambient standards, which are considered to be protective of the environment (NL ECC 2023).

Federal guidance for managing air quality is primarily through the Air Quality Management System (AQMS), developed by the Canadian Council of Ministers of the Environment (CCME) (CCME 2019). The AQMS outlines the Air Zone Management Framework (AZMF) which offers guidance on actions to be taken at the air zone level to achieve the federal Canadian Ambient Air Quality Standards (CAAQS). The CAAQS were developed by the CCME in 2013 and contain criteria for air contaminants (CCME 2022). The Standards for both the province (NL APCR) and the federal government (CAAQS) are presented in Table 2-1. The CAAQS do not contain 24-hour time averaging standards for any air contaminants beyond PM_{2.5}. The CAAQS for NO₂ and SO₂ are based on 1-hour or annual averaging times.

Table 2-1 Applicable Regulatory Criteria for Ambient Air Monitoring

Air Contaminant	Units	Regulatory Criteria for the 24-hour Time Averaging Period	
		Newfoundland Ambient Air Quality Standards (NL AAQS)	Canadian Ambient Air Quality Standards (CAAQS)
Particulate Matter with Aerodynamic Particle Diameter less than or equal to 2.5 microns (PM _{2.5})	µg/ m ³	25	27 (2020 standard) ^A
Particulate Matter with Aerodynamic Particle Diameter less than or equal to 10 microns (PM ₁₀)	µg/ m ³	50	-
Nitrogen Dioxide (NO ₂)	ppb	106	-
Sulphur Dioxide (SO ₂)	ppb	115	-
Ammonia (NH ₃)	ppb	144	-

Notes:

^A Based on a 3-year average of the annual 98th percentile of the daily 24-hour average concentrations.

µg/ m³ micrograms per cubic meter

ppb parts per billion

“-“ Indicates no applicable provincial or federal criteria

Source: (GNL 2022; CCME 2022)

2.3 KEY COMPONENTS ASSESSED

Three key sets of measurements are reported:

- Meteorological data such as temperature, wind direction and windspeed, from the Stephenville Airport weather station
- Ambient concentrations of air contaminants measured during the 2023 field monitoring program at the Stephenville Airport and in West Bay
- Ambient air quality data from the provincially monitored ambient air quality station in Grand Falls-Windsor

2.3.1 Meteorology

Meteorological data to support the ambient air monitoring project have been acquired from the Meteorological Services of Canada (MSC) weather station located at the Stephenville Airport (Figure 3-1). The Stephenville Airport meteorological station is located on-site for one of the monitoring locations and West Bay is approximately 30 kilometers (km) northwest of the Stephenville Airport. The Stephenville Airport weather station only reports meteorological data, and no ambient air quality data is available from this station. Data from this location are sufficiently representative of the meteorological conditions surrounding the Project site to provide general meteorology data for the days of air quality sampling. These data are relevant to the air quality sampling events as they provide additional context in regards to the environmental conditions likely present at the ambient monitoring sites during the sampling. For example, higher winds may explain an increased particulate matter concentration in that winds can contribute to increased fugitive dust in areas with exposed soils or other dusty materials.

The variables that are measured at the Stephenville Airport weather station are shown in Table 2-2.

Table 2-2 Variables Measured at the Stephenville Airport Weather Station

Parameter/Variable	Units
Temperature	°C
Dew Point Temperature	°C
Relative Humidity	%
Wind Direction (10's)	Degrees
Wind Speed	km/hr
Station Pressure	kPa

2.3.2 Air Contaminants of Interest

The ambient air monitoring project included monitoring of the following air contaminants at the Stephenville Airport and in West Bay by Stantec, as well as a comparison to data from the provincially run air monitoring station in Grand Falls-Windsor:

- Stephenville Airport and West Bay Field Program Monitoring
 - Particulate matter with aerodynamic particle diameter less than or equal to 10 microns (PM₁₀)
 - o Particulate matter of this size is a health risk as it can accumulate in the respiratory system after being inhaled (GNL 2010).
 - Particulate matter with aerodynamic particle diameter less than or equal to 2.5 microns (PM_{2.5})
 - o This size of particulate matter poses a greater health risk than PM₁₀, as it is small enough to lodge deeply into the lungs, and also because the smaller particles are suspended in the air for relatively long periods of time (GNL 2010).
 - Nitrogen Dioxide (NO₂)
 - o A reddish-brown gas that originates from high temperature combustion of fuels in processes such as power generation, transportation, and heating (WHO 2023).
 - Sulphur Dioxide (SO₂)
 - o A colourless gas that is formed when fossil fuels such as coal and oil are burned for use in heating, power generation, or in industrial uses (WHO 2023).
 - Ammonia (NH₃) – Only at Stephenville Airport
 - o A colourless gas that is poisonous when inhaled in sufficient quantities. At concentrations above 50 ppm, it is accompanied by a strong odour. NH₃ combines in the atmosphere with sulphates and nitrates to form PM_{2.5} (ECCC 2013).

These air contaminants were selected as they are expected to be emitted in measurable quantities during either project construction or operation and have relevant air quality criteria.

2.4 EXISTING CONDITIONS

Ambient air quality in Newfoundland and Labrador is monitored at six air monitoring stations throughout the province, through a joint effort between the NL ECC and the ECCC's National Air Pollution Surveillance (NAPS) network. The parameters monitored at each air monitoring station vary (NL ECC 2023). Major industrial operators such as NL Hydro, Iron Ore Company of Canada, and Corner Brook Pulp and Paper are also required to monitor air quality near their operations, which are then audited on a routine basis by the NL ECC. The NL ECC summarizes the air quality data collected over the year for each air monitoring station, releasing an annual air quality report. The most recently released report includes data for the years of 2021 and 2022.

The provincial air quality monitoring station that is considered most representative to baseline conditions in the vicinity of the Project Area is located in Grand Falls-Windsor, approximately 220 km from the Project Area. There is a NAPS air monitoring station located in Corner Brook, which is closer to the Project; however, this station is adjacent to the Corner Brook Pulp and Paper Mill which would be expected to contribute to the air contaminant levels that would not be representative to the background concentration of the Project Area. The Grand Falls-Windsor air monitoring station monitors the ambient levels of the following air contaminants on a continuous basis:

- Sulphur Dioxide (SO₂)
- Nitrogen Oxides (NO_x), Nitrogen Dioxide (NO₂), Nitric Oxide (NO)
- Carbon Monoxide (CO)
- Ground-level Ozone (O₃)
- Particulate matter less than 2.5 microns (PM_{2.5})
- Particulate matter less than 10 microns (PM₁₀)

There was one exceedance of the NL APCR standards at the Grand Falls-Windsor air monitoring station for PM_{2.5} in July of 2022, where the 24-hour maximum was recorded at 34.4 µg/m³ (NL ECC 2023). The standards for PM₁₀ were also exceeded one day in June of 2022, where the 24-hour maximum concentration was 55.8 µg/m³ (NL ECC 2023). There was a forest fire in central Newfoundland in July of 2022, south of the air monitoring station that affected air quality in the region, potentially contributing to the PM_{2.5} exceedance (NL ECC 2023). There were also 21 exceedances in 2021, and six exceedances in 2022 of the 8-hour averaging period O₃ standard at the Grand Falls-Windsor air monitoring station (NL ECC 2023). There were no exceedances of any other measured air contaminants at Grand Falls-Windsor during 2021 or 2022. Monthly averages and 24-hour maximums for the air contaminants measured in the baseline monitoring program from the Grand Falls-Windsor NAPS air monitoring station are summarized in Tables 2-3 to 2-5 below.

PROJECT NUJIO'QONIK: BASELINE AMBIENT AIR QUALITY MONITORING STUDY

Table 2-3 NO_x and NO₂ Concentrations - Grand Falls-Windsor Air Monitoring Station - 2021 and 2022

Year	Month	Measured Hours	Average Concentration (ppb)		24-Hour Maximum (ppb)	
			NO _x	NO ₂	NO _x	NO ₂
2021	January	-	-	-	-	-
	February	-	-	-	-	-
	March	724	1.7	1.0	5.2	2.4
	April	718	1.4	1.1	3.1	2.2
	May	743	1.5	1.0	3.3	1.9
	June	718	1.8	1.0	4.8	2.5
	July	744	1.6	0.9	2.2	1.1
	August	739	1.4	0.7	2.8	1.4
	September	717	1.5	0.8	2.4	1.4
	October	742	2.4	1.4	4.2	2.4
	November	720	2.3	1.4	3.7	2.2
	December	743	1.6	0.9	3.4	2.5
	Annual	7308	1.7	1.0	5.2	2.5
2022	January	741	3.2	2.2	7.0	4.6
	February	672	3.2	2.0	6.3	3.9
	March	740	3.0	2.0	5.1	3.7
	April	710	3.9	2.6	6.2	4.3
	May	743	2.7	1.8	4.8	3.5
	June	719	2.2	1.4	3.8	2.0
	July	379	2.0	1.2	3.1	1.5
	August	731	1.8	1.2	2.4	1.8
	September	720	1.8	1.2	2.6	1.6
	October	659	2.5	1.6	3.9	2.3
	November	0	-	-	-	-
	December	562	3.1	1.8	4.1	3.2
Regulatory Criteria for the 24-hour Time Averaging Period		NL AAQS	N/A	N/A	N/A	106

Legend:

NL AAQS Newfoundland Ambient Air Quality Standards

N/A No applicable regulatory criteria

"-" Indicates months where data was not available

Ppb Parts per billion

Source: 2022 Ambient Air Monitoring Report (NL ECC 2023)

PROJECT NUJIO'QONIK: BASELINE AMBIENT AIR QUALITY MONITORING STUDY

Table 2-4 SO₂ Concentrations - Grand Falls-Windsor Air Monitoring Station - 2021 and 2022

Year	Month	Measured Hours	Average Concentration (ppb)	24-Hour Maximum (ppb)
			SO ₂	SO ₂
2021	January	651	0.6	1.0
	February	671	0.6	1.0
	March	740	0.8	1.4
	April	716	0.7	1.4
	May	506	0.4	0.8
	June	715	0.5	0.9
	July	744	0.6	1.3
	August	739	0.6	1.1
	September	718	0.5	0.9
	October	737	0.7	1.3
	November	716	0.8	1.5
	December	744	0.9	1.7
2022	January	740	0.6	1.5
	February	15	0.2	0.0
	March	700	0.6	1.5
	April	714	0.8	1.5
	May	372	0.9	1.4
	June	719	1.4	1.7
	July	378	1.2	2.2
	August	652	0.4	0.7
	September	705	0.7	1.1
	October	722	0.6	1.2
	November	69	0.8	1.1
	December	0	-	-
Regulatory Criteria for the 24-hour Time Averaging Period		NL AAQS	N/A	115
Legend:				
NL AAQS Newfoundland Ambient Air Quality Standards				
N/A No applicable regulatory criteria				
“-“ Indicates months where data was not available				
Ppb Parts per billion				
Source: 2022 Ambient Air Monitoring Report (NL ECC 2023)				

PROJECT NUJIO'QONIK: BASELINE AMBIENT AIR QUALITY MONITORING STUDY

Table 2-5 PM_{2.5} and PM₁₀ Concentrations - Grand Falls-Windsor Air Monitoring Station - 2021 and 2022

Year	Month	Average Concentration (µg/ m ³)		24-Hour Maximum (µg/ m ³)	
		PM _{2.5}	PM ₁₀	PM _{2.5}	PM ₁₀
2021	January	5.5	11.6	15.1	23.3
	February	5.1	11.5	12.9	29.2
	March	5.6	13.1	9.4	30.7
	April	5.0	12.6	11.4	25.1
	May	4.0	10.5	11.7	23.4
	June	3.9	12.0	10.4	30.3
	July	4.5	11.4	20.5	32.2
	August	5.7	13.2	10.6	23.8
	September	3.2	8.9	5.5	16.0
	October	4.4	10.2	10.1	18.3
	November	3.5	8.0	7.5	16.3
	December	3.5	8.4	6.6	22.9
	Annual	4.5	11.0	20.5	32.2
2022	January	5.1	11.0	15.0	24.2
	February	4.0	9.2	6.7	22.4
	March	4.1	10.1	7.0	21.8
	April	4.2	10.0	7.9	20.7
	May	3.5	10.7	5.3	20.0
	June	4.2	14.1	7.9	55.8
	July	5.7	12.7	34.3	49.8
	August	5.0	11.4	9.8	20.4
	September	3.3	9.4	6.4	20.3
	October	4.7	12.7	12.1	28.7
	November	5.0	9.8	19.3	28.9
	December	6.1	13.0	13.1	26.2
	Annual	4.6	11.2	34.3	55.8
Regulatory Criteria for the 24-hour Time Averaging Period	NL AAQS	N/A	N/A	25	50
	CAAQS	N/A	N/A	27	N/A

Legend:

Bold values are an exceedance of the applicable regulatory criteria

NL AAQS Newfoundland Ambient Air Quality Standards

CAAQS Canadian Ambient Air Quality Standards

N/A No applicable regulatory criteria

µg/m³ Micrograms per cubic meter

Source: 2022 Ambient Air Monitoring Report (NL ECC 2023)

PROJECT NUJIO'QONIK: BASELINE AMBIENT AIR QUALITY MONITORING STUDY

The NL Annual Ambient Air Monitoring Reports also include the results from the monitoring conducted by industrial facilities in the province. One Industrial facility that is part of the Industrial Monitoring Network, CEMEX Materials Newfoundland Inc. (CEMEX)'s Lower Cove Quarry, formerly owned by Atlantic Minerals Limited (AML), is located on the Port-au-Port Peninsula, adjacent (< 1 km away) to the Project area where the Port-au-Port Windfarm would be developed. The CEMEX Quarry has continuous ambient monitors installed on the west side of the mining operation for PM_{2.5} and Total Particulate Matter (TPM), that have been monitoring air contaminants released from the mining operations since 2017 (NL ECC 2023). There was one PM_{2.5} exceedance in March of 2021, and an exceedance of TPM in May of 2021. In 2022, there were no PM_{2.5} exceedances of the NL AAQS or the CAAQS. The NL AAQS 24-hour maximums for TPM were exceeded five times over a six-month period, in May (1), June (1), August (2), and October (1), during 2022. The exceedances were expected to be associated with stockpiling and port activities at the CEMEX Quarry (NL ECC 2023). Monthly averages and 24-hour maximum concentrations of TPM and PM_{2.5} are presented for 2021 and 2022 from the CEMEX continuous monitor in Table 2-6 below.

Table 2-6 PM_{2.5} and TPM Concentrations - CEMEX Air Monitoring Station - 2021 and 2022

Year	Month	Average Concentration (µg/ m ³)		24-Hour Maximum (µg/ m ³)	
		PM _{2.5}	TPM	PM _{2.5}	TPM
2021	January	3.6	4.7	7.0	16.0
	February	4.2	5.6	9.8	14.3
	March	7.0	7.2	43.6	21.7
	April	3.4	6.4	4.6	81.3
	May	-	10.4	-	152.2
	June	3.6	11.4	13.7	64.1
	July	3.0	7.6	9.9	33.2
	August	4.4	10.5	8.8	51.8
	September	3.4	9.2	5.3	73.4
	October	2.8	7.7	6.0	54.7
	November	4.4	6.7	16.2	17.9
	December	4.6	5.8	7.8	28.5
	Annual	4.2	7.6	43.6	152.2

PROJECT NUJIO'QONIK: BASELINE AMBIENT AIR QUALITY MONITORING STUDY

Table 2-6 PM_{2.5} and TPM Concentrations - CEMEX Air Monitoring Station - 2021 and 2022

Year	Month	Average Concentration (µg/ m ³)		24-Hour Maximum (µg/ m ³)	
		PM _{2.5}	TPM	PM _{2.5}	TPM
2022	January	5.3	7.0	10.8	18.1
	February	4.4	7.2	11.4	21.0
	March	3.3	5.4	6.0	9.5
	April	3.9	6.0	6.3	16.7
	May	4.2	10.0	8.0	135.8
	June	5.1	14.1	9.9	130.5
	July	5.7	17.7	12.1	56.0
	August	6.1	14.9	10.9	183.4
	September	3.9	8.6	5.8	26.0
	October	4.8	13.0	10.4	160.2
	November	3.5	9.2	8.5	58.0
	December	3.5	7.0	7.3	96.9
	Annual	4.5	9.1	12.1	183.4
Regulatory Criteria for the 24-hour Time Averaging Period	NL AAQS	N/A	N/A	25	120
	CAAQS	N/A	N/A	27	N/A
Legend: Bold values are an exceedance of the applicable regulatory criteria NL AAQS Newfoundland Ambient Air Quality Standards CAAQS Canadian Ambient Air Quality Standards N/A No applicable regulatory criteria “-“ Indicates months where data was not available µg/ m ³ Micrograms per cubic meter Source: 2022 Ambient Air Monitoring Report (NL ECC 2023)					

There are no large industrial sources of emissions in the Project Area. Based on a review of the ECCC National Pollutant Release Inventory (NPRI) reporting data for the Island of Newfoundland, the nearest sources of emissions to the Project Area include the CEMEX Lower Cove Quarry, the Corner Brook Pulp and Paper Mill, and the Newfoundland and Labrador Hydro Ramea Diesel Generating Station. Based on recent NPRI reporting data, air contaminants that are released in substantive quantities from these facilities include combustion gases (NO_x) and particulate matter (PM₁₀ and PM_{2.5}) (ECCC 2023). NPRI defines “substantive quantities” as the masses of air contaminants released to the atmosphere that may impact air quality within a 5 km radius of the source. The air contaminants that were measured in the baseline monitoring are those that may have substantive quantities for which there are ambient air quality criteria (i.e., objectives, guidelines, or standards) adopted by provincial (NL and Ontario) and/or national regulatory agencies.

3.0 METHODOLOGY

The methodology for the 2023 ambient air quality monitoring program includes the following, i) pre-monitoring planning, ii) ambient air monitoring locations, iii) study team, and iv) sampling methods.

3.1 PRE-MONITORING PLANNING

The objective of this baseline study on air quality is to characterize the baseline conditions regarding ambient (i.e., outdoor) air quality (i.e., current, existing conditions) near the Project Area. The existing conditions for air quality were characterized prior to field monitoring using a combination of publicly available data and literature. The most recently available ambient air quality data from the ECCC's NAPS Program (2019–2021), the provincial air quality annual report (2021-2022), and air contaminant release information from the NPRI were obtained and used in the assessment to determine which air contaminants to monitor.

As per the provincial EIS Guidelines (NL ECC 2022), the baseline study includes a review of the ambient air quality data that was collected, including particulate matter.

The ambient air quality monitoring program considered the following air contaminants:

- Nitrogen dioxide (NO₂)
- Sulphur dioxide (SO₂)
- Ammonia (NH₃)
- Particulate matter (PM₁₀) with particles having an aerodynamic diameter less than 10 µm
- Particulate matter (PM_{2.5}) with particles having an aerodynamic diameter less than 2.5 µm

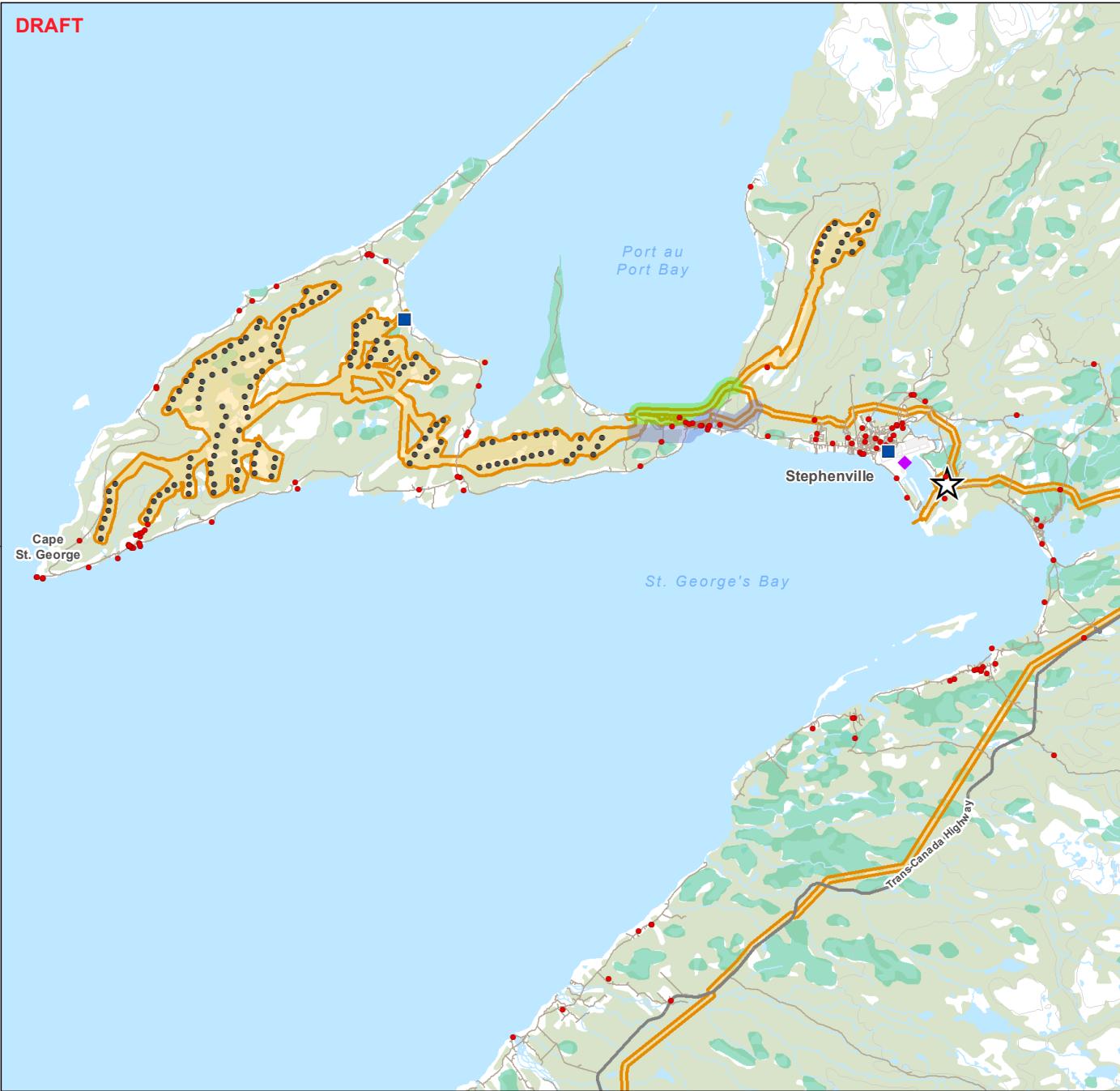
Baseline ambient air quality monitoring was conducted for these contaminants as they are considered most relevant to characterize the baseline conditions before the construction of the wind farms and ammonia/hydrogen plant. Sampling was conducted at the Stephenville Airport and in West Bay in order to quantify the seasonal variation (spring, summer, fall/winter) of the air contaminants (PM₁₀, PM_{2.5}, NO₂, SO₂, and NH₃). NH₃ was only sampled at the Stephenville Airport due to its close proximity to the proposed hydrogen / ammonia plant were there would be potential for release of NH₃ during operation.

The PM₁₀ High Volume (Hi-Vol) monitor and PM_{2.5} PQ200 monitors were installed and scheduled to run for three periods of 24 hours over 1 week during each monitoring event to allow for sufficient time to confirm baseline ambient air quality levels during favourable meteorological conditions (i.e., no rain and low winds). The passive air samplers for NO₂, SO₂, and NH₃ were deployed for a period of two weeks during each monitoring event.

3.1.1 Site Selection

The planned Project development includes the construction of two wind farms, one on the Port au Port Peninsula, and one in the Anguille Mountains, called Codroy, a hydrogen/ammonia plant in Stephenville, transmission lines to connect the windfarms to the hydrogen / ammonia plant, as well as upgrades to the existing port in Stephenville. The proposed hydrogen/ammonia plant and export facilities at the Port of Stephenville are located approximately 5 km west of the Town of Stephenville. The Port au Port Wind Farm (comprised of portions of the Port au Port Peninsula extending eastward to Port au Port East) is located west and north of Stephenville. The Codroy Wind Farm is located 75 km south of Stephenville.

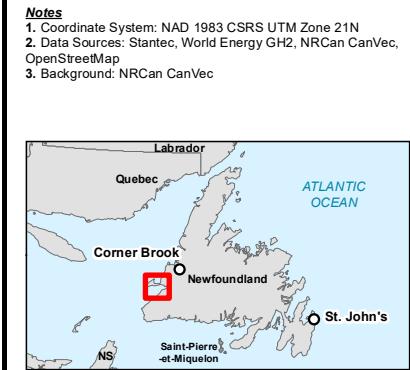
The Port au Port Peninsula is connected to the mainland of Newfoundland by a narrow isthmus, with the peninsula bounded by the Gulf of St. Lawrence to the west, St. George's Bay to the south and Port au Port Bay to the northwest. As of 2021, there were approximately 4,734 people living on the Port au Port Peninsula with 227 living in the community of West Bay, where sampling was completed (Statistics Canada 2023). Apart from the CEMEX Lower Cove Quarry, there are little other sources of industrial air contaminants on the Peninsula. Current air quality would therefore be characteristic of a rural area, with the primary source of air contaminants coming from personal vehicles, home heating and other residential activities. The planned substation for the Port au Port Wind Farm will be constructed close to West Bay, along with many planned turbine locations; therefore, receptors in West Bay could experience elevated air quality contaminants from construction.


According to the 2021 census, the Town of Stephenville had a population of 7,344, a 1% increase from 2016, and has 3,685 private residences (Statistics Canada 2023). There are more industrial sources of air contaminants in Stephenville, including the Stephenville port, the airport, a smolt hatchery, and a metal recycling plant.

The Stephenville Airport monitoring location was chosen due to its close proximity to the proposed Hydrogen/Ammonia Production and Storage Facility, while the West Bay location was chosen due to its proximity to the Port au Port Wind Farm. The exact locations were determined based on site access and security, power availability and siting criteria. Sites were selected in consideration of the CCME NAPS Guideline requirements.

3.2 AMBIENT AIR MONITORING LOCATIONS

The sampling locations for the 2023 ambient air quality monitoring field program included one location at the Stephenville airport and one location in West Bay (Figure 3-1). At the Stephenville airport, the monitors were set up on a patch of grass outside the airport terminal adjacent to the tarmac. There is very little flight traffic or ground vehicle traffic in or out of the Stephenville Airport; however, periods of higher-than-normal air traffic could influence the monitoring results. Photos of the monitoring setup at the Stephenville airport are provided in Appendix D. In the community of West Bay, the monitors were set up in an open backyard of a residential property on Route 463 along the coast, with ample space to install the samplers away from trees and other obstructions.



Stantec

Air Quality Monitoring Location	Other Features
● Sensitive Receptor	— Trans-Canada Highway
◆ Stephenville Airport Weather Station	— Road
	— Contour (100 m)
	— Watercourse
	— Waterbody
	— Wetland
	— Forested Area
Proposed Project Features	
● Turbine Location	
★ Hydrogen / Ammonia Plant Location	
■ Project Area	
Port au Port Interconnection	
■ Proposed Route	
■ Alternate Route	

N

0 4 8 Kilometres
(At original document size of 8.5x11)
1:375,000

Project Location
Stephenville
NL
Prepared by MB/AC on 1/22/2024

Client/Project
World Energy GH2
Project Nujjo'qonik

Figure No.
3-1

2023 WEGH2 Air Quality Monitoring Locations

3.3 EQUIPMENT SUMMARY AND SAMPLING METHODS

Table 3-1 provides a summary of the instrumentation and filter media used for monitoring at each of the sampling locations.

Table 3-1 Summary of Instrumentation and Filter Media used during Monitoring Program

Air Contaminant	Sampler	Filter Media
PM ₁₀	Tisch Environmental TE-6070 mass-flow PM ₁₀ High Volume Sampler	Pre-weighted 8" x 10" quartz filter paper
PM _{2.5}	BGI/Mesa Labs PQ 200 Ambient Air Particulate Sampler	Pre-weighted 37 mm glass fiber filter
NO ₂	Passive Air Sampler Device	Cartridge
SO ₂		
NH ₃		

Prior to the initiation of sampling events, each sampling device was inspected, cleaned, and calibrated as per the manufacturers and sampling method specifications. Calibration dates for each monitoring event are provided in Table 3-2. Calibration records are provided in Appendix B.

Table 3-2 Sampler Calibrations

Sampler ID	Monitoring Event	Location	Calibration Date
PM ₁₀ -977	Spring	Stephenville Airport	June 26, 2023
PM ₁₀ -976	Spring	West Bay	June 26, 2023
PQ200-1392	Spring	Stephenville Airport	June 26, 2023
PQ200-1747	Spring	West Bay	June 26, 2023
PM ₁₀ -977	Summer	West Bay	August 14, 2023
PM ₁₀ -976	Summer	Stephenville Airport	August 14, 2023
PQ200-1392	Summer	West Bay	August 14, 2023
PQ200-1747	Summer	Stephenville Airport	August 14, 2023
PM ₁₀ -977	Fall / Winter	Stephenville Airport	November 6, 2023
PM ₁₀ -976	Fall / Winter	West Bay	November 6, 2023
PQ200-1392	Fall / Winter	West Bay	November 6, 2023
PQ200-1747	Fall / Winter	Stephenville Airport	November 6, 2023

3.3.1 PM₁₀

A Tisch Environmental TE-6070 mass-flow PM₁₀ high-volume sampler was used to collect the samples over a 24-hour period using the US EPA National Primary and Secondary Ambient Air Quality Standards, Appendix M – Reference Method for the Determination of Particulate Matter as PM₁₀ in the Atmosphere (US EPA 1997). A pre-weighted 8" x 10" quartz filter paper was used to sample the air contaminant. Prior to setting up each of the PM₁₀ samples, the flow rate was set to the manufacturers and sampling method specifications. After each of the sampling events, the flow rates were used to determine the volumes and validity of the samples for each monitoring event. The sampler was set up and ran for three 24-hours periods during each monitoring event, with filters collected and stored in envelopes after each 24-hour sampling period.

3.3.2 PM_{2.5}

A BGI/Mesa Labs PQ 200 Ambient Air Particulate Sampler was used to collect the PM_{2.5} samples over a 24-hour period. The PM_{2.5} samples were collected following the US EPA Reference Method Designation: EPA RFPS-0498-116 FRM for PM_{2.5} (US EPA 1998). A pre-weighted 37 mm glass fiber filter was used to sample the air contaminant. The PM_{2.5} samplers were setup according to the sampling method specifications. After each sampling event the average temperature, flow, and pressure was used to determine the volume and validity of the samples for each monitoring event. The samplers were set up and ran for three 24-hour periods during each monitoring event, with filters collected and changed each day.

The filters for PM₁₀ and PM_{2.5} samples were collected and sent for analysis to AGAT laboratories, located in Dartmouth, Nova Scotia. The full laboratory analysis report is provided in Appendix A.

3.3.3 Gaseous Compounds

A passive air sampler device was setup approximately 1.5 meters (m) off the ground to collect the sample. The NO₂, SO₂, and NH₃ samples that were collected were deployed for a period of two-weeks. The NO₂, SO₂, and NH₃ samples were sent to Bureau Veritas (BV) laboratory in Edmonton, Alberta for analysis. The full laboratory report is provided in Appendix A.

4.0 AMBIENT AIR QUALITY MONITORING RESULTS

The measured data presented for the monitoring events include:

- meteorological data acquired from the MSC weather station at the Stephenville Airport.
- the ambient air quality data collected at the Stephenville Airport and in West Bay for the 2023 ambient air quality field program. The laboratory analysis reports are included in Appendix A.
- PM_{2.5}, PM₁₀, and NO₂ average concentrations from the NAPS air monitoring station in Grand Falls-Windsor during the same timeframe as the monitoring conducted by Stantec. This raw monitoring data was provided by Barrie Lawrence of the NL ECC. SO₂ and NH₃ were not measured at the Grand Falls-Windsor air monitoring station during this time. NO₂ concentrations from the Grand Falls-Windsor air monitoring station are not available for the November monitoring period.

4.1 METEOROLOGICAL DATA

A summary of the meteorological conditions from the Stephenville Airport ECCC weather station during each sampling event in 2023 are presented in Table 4-1 and Table 4-2, for sampling conducted at the Stephenville Airport and in West Bay, respectively.

In the event of an exceedance of an ambient air quality criterion, the meteorological data would be reviewed in more detail, as needed, to see if there is any correlation between wind direction and the higher concentrations.

PROJECT NUJIO'QONIK: BASELINE AMBIENT AIR QUALITY MONITORING STUDY

Table 4-1 Meteorological Conditions - Stephenville Airport Sampling 2023

Sampling Date	June 26, 2023	June 27, 2023	June 28, 2023	August 15, 2023	August 16, 2023	August 17, 2023	November 6, 2023	November 7, 2023	November 8, 2023
Sample Start	06/26 13:30	06/27 14:00	06/28 14:45	08/15 16:59	08/16 17:15	08/17 17:20	11/06 13:55	11/07 14:10	11/08 14:37
Sample Stop	06/27 13:30	06/28 14:00	06/29 14:45	08/16 16:59	08/17 17:15	08/18 17:20	11/07 13:55	11/08 14:10	11/09 14:37
Wind Direction (blowing from)	Frequency (%)								
North	4	0	8	17	17	4	0	0	8
North-northeast	4	4	0	0	13	13	4	0	21
Northeast	4	13	0	0	17	13	8	0	21
East-northeast	4	21	0	0	0	8	8	13	38
East	38	29	0	0	0	13	13	58	13
East-southeast	13	4	4	0	0	0	0	13	0
Southeast	0	0	0	4	0	0	0	13	0
South-southeast	0	4	21	4	0	25	4	4	0
South	4	17	21	4	0	4	0	0	0
South-southwest	4	0	8	4	4	4	0	0	0
Southwest	8	0	8	0	4	0	0	0	0
West-southwest	8	4	4	0	29	4	0	0	0
West	8	0	17	0	4	8	33	0	0
West-northwest	0	0	4	8	4	0	25	0	0
Northwest	0	0	0	17	0	0	4	0	0
North-northwest	0	0	4	33	8	4	0	0	0
Meteorological Variable	Value								
Average Wind Speed m/s (km/hr)	5.1 (18.2)	4.2 (15.0)	2.6 (9.3)	3.4 (12.4)	2.9 (10.3)	3.5 (12.8)	5.2 (18.9)	6.4 (23.1)	6.1 (21.9)
Average Temperature (°C)	13.4	17.5	20.8	16.2	15.7	17.2	1.9	6.6	5.3
Minimum Temperature (°C)	9.3	14.4	18.1	13.8	9.8	11.9	-1.6	4.2	2.6
Maximum Temperature (°C)	18.8	22.8	23.6	19.8	22.8	23.1	5.0	9.9	8.6
Relative Humidity (%)	93.0	81.3	82.6	86.0	83.2	80.7	62.0	80.4	85.2
Notes:									
m/s Meters per second km/hr Kilometers per hour									
Source: (ECCC 2023b)									

PROJECT NUJIO'QONIK: BASELINE AMBIENT AIR QUALITY MONITORING STUDY

The average wind speed during the monitoring period in the Spring was 4.0 m/s, 3.3 m/s in the summer, and 5.9 m/s in the fall/winter. The predominant wind direction varied greatly during the monitoring periods.

Table 4-2 Meteorological Conditions – West Bay Sampling 2023

Sampling Date	June 26, 2023	June 27, 2023	June 28, 2023	August 15, 2023	August 16, 2023	August 17, 2023	November 6, 2023	November 7, 2023	November 8, 2023
Sample Start	06/26 18:00	06/27 18:10	06/28 18:20	08/15 18:11	08/16 18:18	08/17 18:25	11/06 17:15	11/07 18:05	11/08 18:35
Sample Stop	06/27 18:00	06/28 18:10	06/29 18:20	08/16 18:11	08/17 18:18	08/18 18:25	11/07 17:15	11/08 18:05	11/09 18:35
Wind Direction (blowing from)	Frequency (%)								
North	4	0	8	17	17	4	0	0	25
North-northeast	4	0	0	0	13	13	4	0	21
Northeast	4	4	0	0	17	13	8	4	17
East-northeast	4	8	0	0	0	8	8	17	29
East	38	67	0	0	0	13	13	67	4
East-southeast	13	17	4	0	0	4	0	13	0
Southeast	0	0	0	4	0	0	8	0	0
South-southeast	0	0	25	4	0	25	8	0	0
South	4	0	25	4	0	4	0	0	0
South-southwest	4	0	4	4	4	4	0	0	0
Southwest	8	0	8	0	4	0	0	0	0
West-southwest	8	0	4	0	33	0	0	0	0
West	8	0	21	0	4	8	33	0	0
West-northwest	0	0	0	8	4	0	13	0	0
Northwest	0	0	0	17	0	0	4	0	0
North-northwest	0	0	0	33	4	4	0	0	4

PROJECT NUJIO'QONIK: BASELINE AMBIENT AIR QUALITY MONITORING STUDY

Table 4-2 Meteorological Conditions – West Bay Sampling 2023

Sampling Date	June 26, 2023	June 27, 2023	June 28, 2023	August 15, 2023	August 16, 2023	August 17, 2023	November 6, 2023	November 7, 2023	November 8, 2023
Sample Start	06/26 18:00	06/27 18:10	06/28 18:20	08/15 18:11	08/16 18:18	08/17 18:25	11/06 17:15	11/07 18:05	11/08 18:35
Sample Stop	06/27 18:00	06/28 18:10	06/29 18:20	08/16 18:11	08/17 18:18	08/18 18:25	11/07 17:15	11/08 18:05	11/09 18:35
Wind Direction (blowing from)	Frequency (%)								
Meteorological Variable	Value								
Average Wind Speed m/s (km/hr)	5.4 (19.3)	3.2 (11.6)	3.1 (11.2)	3.3 (12.0)	2.8 (10.2)	3.5 (12.7)	5.0 (18.0)	6.4 (22.9)	5.8 (21.0)
Average Temperature (°C)	13.3	18.6	20.8	16.3	15.7	17.3	2.0	7.1	4.4
Minimum Temperature (°C)	9.3	14.4	18.1	13.8	9.8	11.9	-1.6	9.9	6.9
Maximum Temperature (°C)	18.4	22.8	23.6	19.8	22.8	23.1	5.0	9.9	6.9
Relative Humidity (%)	78.8	82.7	81.6	85.5	83.6	80.3	63.4	85.2	82.0
Notes: m/s Meters per second km/hr Kilometers per hour Source: (ECCC 2023b)									

The average wind speed during the monitoring period in the Spring was 3.9 m/s, 3.2 m/s in the summer, and 5.8 m/s in the fall/winter. The predominant wind direction varied greatly during the monitoring periods.

Wind roses, showing the direction and speed of wind at the Stephenville Meteorological Station for each sampling day in 2023 are presented in Appendix C.

4.2 SAMPLING RESULTS

Ambient Air Monitoring was completed throughout 2023 in four separate field monitoring events. PM_{10} and $PM_{2.5}$ were monitored in West Bay and at the Stephenville Airport for three consecutive 24-hour periods during June, August, and November. NO_2 and SO_2 were monitored using passive air samplers in West Bay and at the Stephenville Airport for a period of two weeks during each season (June, September, and November). NH_3 was measured using passive air samplers at the Stephenville Airport for a period of two weeks during June, August, and November.

The results of the ambient air monitoring for PM_{10} , $PM_{2.5}$, NO_2 , SO_2 , and NH_3 are displayed in Tables 4-3 to 4-8 and evaluated against the criteria for each contaminant in the NL AAQS and CAAQS. Ambient air monitoring data was also obtained from the most representative NAPS ambient air quality monitoring station in Grand Falls-Windsor which is approximately 220 km east-northeast from the proposed Project. The Grand Falls-Windsor air monitoring station measures the following air contaminants: SO_2 , nitric oxide (NO), NO_2 , NO_x , CO, $PM_{2.5}$, PM_{10} , and O_3 . Data was obtained from the NAPS Grand Falls-Windsor air monitoring station during the timeframe of Stantec's ambient air monitoring and is compared to the results in the Tables below.

4.2.1 Particulate Matter smaller than 10 microns (PM_{10})

Particulate matter with particles less than 10 microns in diameter (PM_{10}) was sampled following the methodology outlined in the US EPA National Primary and Secondary Ambient Air Quality Standards, Appendix M – Reference Method for the Determination of Particulate Matter as PM_{10} in the Atmosphere (US EPA 1997).

A summary of the ambient air monitoring results for PM_{10} for 2023 is presented in Tables 4-3 and 4-4 for Stephenville Airport and West Bay, respectively, along with corresponding regulatory criteria. Monitoring results from the NAPS air monitoring station in Grand Falls-Windsor during the timeframe of Stantec's ambient air monitoring are also presented for comparison.

PROJECT NUJIO'QONIK: BASELINE AMBIENT AIR QUALITY MONITORING STUDY

Table 4-3 Ambient Air Monitoring Results for PM₁₀ – Stephenville Airport 2023

Air Contaminant	Units	Regulatory Criteria for the 24-hour Time Averaging Period		Sampling Date										Average
		Newfoundland Ambient Air Quality Standards (NL AAQS)	Canadian Ambient Air Quality Standards (CAAQS)	26-June- 2023	27-June- 2023	28-June- 2023	15-August- 2023	16-August- 2023	17-August- 2023	6- November- 2023	7- November- 2023	8- November- 2023		
Sampling Period	Start				06/26 13:30	06/27 14:00	06/28 14:45	08/15 16:59	08/16 17:15	08/17 17:20	11/06 13:55	11/07 14:10	11/08 14:37	
	End				06/27 13:30	06/28 14:00	06/29 14:45	08/16 16:59	08/17 17:15	08/18 17:20	11/07 13:55	11/08 14:10	11/09 14:37	
Volume of Air Sampled	m ³	-	-	1700	1650	1677	1766	1646	1643	1744	1626	1661	1679	
Stephenville Airport Particulate Matter less than 10 Microns (PM ₁₀)	µg/m ³	50	-	<3 ^A	6	9	4 ^C	5	8	27	18	7	<10	
Grand Falls-Windsor Particulate Matter less than 10 Microns (PM ₁₀) ^B	µg/m ³	50	-	10	12	13	5	6	9	11	22	7	11	

Notes:

Averages are reported as "less than" where some of the tests were below the minimum detection limit of the laboratory

"—" No applicable regulatory criteria or not applicable

A Below the laboratory's reported detection limit of 3 µg/m³

B Raw data from the Grand Falls-Windsor air monitoring station during the conducted monitoring were provided by Barrie Lawrence of the NL ECC.

C PM_{2.5} measured on August 15 at this location was slightly higher than the PM₁₀ sample, indicating that some particulate could have been lost from the PM₁₀ sample during sample collection, shipping, or lab handling on the PM₁₀ sample.

µg/m³ Micrograms per cubic meter

m³ Cubic meters

PROJECT NUJIO'QONIK: BASELINE AMBIENT AIR QUALITY MONITORING STUDY

Table 4-4 Ambient Air Monitoring Results for PM₁₀ – West Bay 2023

Air Contaminant	Units	Regulatory Criteria for the 24-hour Time Averaging Period		Sampling Date									Average
		Newfoundland Ambient Air Quality Standards (NL AAQS)	Canadian Ambient Air Quality Standards (CAAQS)	26-June-2023	27-June-2023	28-June-2023	15-August- 2023	16-August- 2023	17-August- 2023	6- November- 2023	7- November- 2023	8- November- 2023	
Sampling Period	Start			06/26 18:00	06/27 18:10	06/28 18:20	08/15 18:11	08/16 18:18	08/17 18:25	11/06 17:15	11/07 18:05	11/08 18:35	
	End			06/27 18:00	06/28 18:10	06/29 18:20	08/16 18:11	08/17 18:18	08/18 18:25	11/07 17:15	11/08 18:05	11/09 18:35	
Volume of Air Sampled	m ³	-	-	1693	1644	1627	1659	1667	1803	1745	1645	1697	1687
West Bay Particulate Matter less than 10 Microns (PM ₁₀)	µg/m ³	50	-	9	18	36	14	<3 ^A	<3 ^A	16	6	28	<15
Grand Falls-Windsor Particulate Matter less than 10 Microns (PM ₁₀) ^B	µg/m ³	50	-	12	11	13	5	6	9	11	22	5	10

Notes:

Averages are reported as "less than" where some of the tests were below the minimum detection limit of the laboratory

"—" No applicable regulatory criteria or not applicable

A Below the laboratory's reported detection limit of 3 µg/m³

B Raw data from the Grand Falls-Windsor air monitoring station during the conducted monitoring were provided by Barrie Lawrence of the NL ECC.

µg/m³ Micrograms per cubic meter

m³ Cubic meters

PROJECT NUJIO'QONIK: BASELINE AMBIENT AIR QUALITY MONITORING STUDY

A total of eighteen samples (nine at each location) of PM₁₀ were collected to represent the seasonal variation of PM₁₀ from June to November 2023 at the Stephenville Airport and in West Bay. Three samples were collected at each monitoring location for each season, June (spring), August (summer), November (fall/winter) over a period of 24-hours.

The results of the 2023 PM₁₀ ambient air monitoring at the Stephenville airport ranged from <3 µg/m³ (non-detect) to 27 µg/m³. The measured concentrations ranged from <3 µg/m³ (non-detect) to 9 µg/m³ for the spring, 4 µg/m³ to 8 µg/m³ for the summer, and 7 µg/m³ to 27 µg/m³ for the fall/winter. The average measured concentration of PM₁₀ at the Stephenville Airport was <10 µg/m³. The results of the ambient air monitoring for PM₁₀ were all below the threshold limits in the NL AAQS of 50 µg/m³ and typically were relatively consistent with NAPS monitoring 24-hour averages at Grand Falls-Windsor.

The results of the 2023 PM₁₀ ambient air monitoring at West Bay ranged from <3 µg/m³ (non-detect) to 36 µg/m³. The measured concentrations ranged from 9 µg/m³ to 36 µg/m³ for the spring, <3 µg/m³ (non-detect) to 14 µg/m³ for the summer, and 6 µg/m³ to 28 µg/m³ for the fall/winter. The average measured concentration of PM₁₀ in West Bay was <15 µg/m³. The results of the ambient air monitoring for PM₁₀ were below the threshold limits in the NL AAQS of 50 µg/m³ and trended relatively consistent on average with the NAPS monitoring 24-hour averages at Grand Falls-Windsor.

4.2.2 Particulate Matter smaller than 2.5 microns (PM_{2.5})

The results for particulate matter with particles less than 2.5 microns in diameter (PM_{2.5}) were collected following the US EPA Reference Method Designation: EPA RFPS-0498-116 FRM for PM_{2.5} (US EPA 1998).

A summary of the ambient air monitoring results for PM_{2.5} for 2023 is presented in Tables 4-5 and 4-6 for Stephenville Airport and West Bay, respectively, along with corresponding regulatory criteria. Monitoring results from the NAPS air monitoring station in Grand Falls-Windsor during the timeframe of Stantec's ambient air monitoring are also presented for comparison.

PROJECT NUJIO'QONIK: BASELINE AMBIENT AIR QUALITY MONITORING STUDY

Table 4-5 Ambient Air Monitoring Results for PM_{2.5} – Stephenville Airport 2023

Air Contaminant	Units	Regulatory Criteria for the 24-hour Time Averaging Period		Sampling Date										Average
		Newfoundland Ambient Air Quality Standards (NL AAQS)	Canadian Ambient Air Quality Standards (CAAQS)	26-June- 2023	27-June- 2023	28-June- 2023	15-August- 2023	16-August- 2023	17-August- 2023	6- November- 2023	7- November- 2023	8-November-2023		
Sampling Period	Start			06/26 13:30	06/27 14:00	06/28 14:45	08/15 16:59	08/16 17:15	08/17 17:20	11/06 13:55	11/07 14:10	11/08 14:37		
	End			06/27 13:30	06/28 14:00	06/29 14:45	08/16 16:59	08/17 17:15	08/18 17:20	11/07 13:55	11/08 14:10	11/09 14:37		
Volume of Air Sampled	m ³	-	-	24	24	23	26	24	24	28	24	24	25	
Stephenville Airport Particulate Matter less than 2.5 Microns (PM _{2.5})	µg/m ³	25	27	2.9	1.7	5.2	4.7	2.6	1.3	4.0	2.1	0.8	2.8	
Grand Falls-Windsor Particulate Matter less than 2.5 Microns (PM _{2.5}) ^A	µg/m ³	25	27	2.8	2.9	3.5	2.3	1.9	2.9	3.1	5.8	3.3	3.2	
Notes: "-" No applicable regulatory criteria or not applicable A Raw data from the Grand Falls-Windsor air monitoring station during the conducted monitoring were provided by Barrie Lawrence of the NL ECC. µg/m ³ Micrograms per cubic meter m ³ Cubic meters														

PROJECT NUJIO'QONIK: BASELINE AMBIENT AIR QUALITY MONITORING STUDY

Table 4-6 Ambient Air Monitoring Results for PM_{2.5} – West Bay 2023

Air Contaminant	Units	Regulatory Criteria for the 24-hour Time Averaging Period		Sampling Date									Average
		Newfoundland Ambient Air Quality Standards (NL AAQS)	Canadian Ambient Air Quality Standards (CAAQS)	26-June- 2023	27-June- 2023	28-June- 2023	15-August- 2023	16-August- 2023	17-August- 2023	6- November- 2023	7- November- 2023	8- November- 2023	
Sampling Period	Start			06/26 18:00	06/27 18:10	06/28 18:20	08/15 18:11	08/16 18:18	08/17 18:25	11/06 17:15	11/07 18:05	11/08 18:35	
	End			06/27 18:00	06/28 18:10	06/29 18:20	08/16 18:11	08/17 18:18	08/18 18:25	11/07 17:15	11/08 18:05	11/09 18:35	
Volume of Air Sampled	m ³	-	-	24	23	24	23	24	24	25	24	24	24
West Bay Particulate Matter less than 2.5 Microns (PM _{2.5})	µg/m ³	25	27	1.7	1.7	5.5	1.7	2.5	2.9	4.8	5.4	16.1	4.7
Grand Falls-Windsor Particulate Matter less than 2.5 Microns (PM _{2.5}) ^A	µg/m ³	25	27	3.1	2.6	3.9	2.2	2.0	2.9	3.2	6.0	2.7	3.2
Notes:													
"—" No applicable regulatory criteria or not applicable													
A Raw data from the Grand Falls-Windsor air monitoring station during the conducted monitoring were provided by Barrie Lawrence of the NL ECC.													
µg/m ³ Micrograms per cubic meter													
m ³ Cubic meters													

A total of eighteen samples of PM_{2.5} were collected to represent the seasonal variation of PM_{2.5} from June to November 2023 at the Stephenville Airport and in West Bay. Three samples were collected at each monitoring location for each season, June (spring), August (summer), November (fall/winter) over a period of 24-hours. The results of the ambient air monitoring for PM_{2.5} were compared to the NL AAQS and the monitoring data from the Grand Falls-Windsor NAPS air monitoring station.

The results of the 2023 ambient air monitoring of PM_{2.5} at the Stephenville airport ranged from 0.8 µg/m³ to 5.2 µg/m³. The measured concentrations ranged from 1.7 µg/m³ to 5.2 µg/m³ for the spring, 1.3 µg/m³ to 4.7 µg/m³ for the summer, and 0.8 µg/m³ to 4.0 µg/m³ for the fall/winter. The average measured concentration of PM_{2.5} at the Stephenville Airport was 2.8 µg/m³. The results of the ambient air monitoring for PM_{2.5} were below the threshold limits in the NL AAQS of 25 µg/m³ and trended close to the NAPS monitoring 24-hour averages from Grand Falls-Windsor. The average measured concentration of 2.8 µg/m³ also trends below the 2021 and 2022 annual averages of 4.2 and 4.5 µg/m³ measured nearby at the CEMEX air monitoring station on the Port au Port peninsula, summarized in Section 2.4 of this report.

The results of the 2023 ambient air monitoring of PM_{2.5} at West Bay ranged from 1.7 µg/m³ to 16.1 µg/m³. The measured concentrations ranged from 1.7 µg/m³ to 5.5 µg/m³ for the spring, 1.7 µg/m³ to 2.9 µg/m³ for the summer, and 4.8 µg/m³ to 16.1 µg/m³ for the fall/winter. The average measured concentration of PM_{2.5} in West Bay was 4.7 µg/m³. The results of the ambient air monitoring for PM_{2.5} were below the threshold limits in the NL AAQS of 25 µg/m³ and trended close to the NAPS monitoring 24-hour averages from Grand Falls-Windsor. The average measured concentration of 4.7 µg/m³ also trends closely to the 2021 and 2022 annual averages of 4.2 and 4.5 µg/m³ measured nearby at the CEMEX air monitoring station on the Port au Port peninsula, summarized in Section 2.4 of this report.

4.2.3 Nitrogen Dioxide, Sulphur Dioxide, and Ammonia

A summary of the ambient air monitoring results for NO₂, SO₂, and NH₃ for 2023 is presented in Tables 4-7 and 4-8 for Stephenville Airport and West Bay, respectively, along with corresponding regulatory criteria. Monitoring results from the NAPS air monitoring station in Grand Falls-Windsor during the timeframe of Stantec's ambient air monitoring are also presented for comparison. During this period, SO₂ and NH₃ were not monitored at the Grand-Falls Windsor air monitoring station. Results for NO₂ from the Grands Falls-Windsor period are not available for the November sampling.

PROJECT NUJIO'QONIK: BASELINE AMBIENT AIR QUALITY MONITORING STUDY

Table 4-7 Ambient Air Monitoring Results for NO₂, SO₂, and NH₃ – Stephenville Airport 2023

Air Contaminant	Units	Regulatory Criteria for the 24-hour Time Averaging Period		Sampling Date				Average
		Newfoundland Ambient Air Quality Standards (NL AAQS)	Canadian Ambient Air Quality Standards (CAAQS)	June 2023	August 2023	September 2023	November 2023	
Sampling Period	Start			June 26, 2023 13:30	August 14, 2023 13:30	September 19, 2023 12:12	November 6, 2023 13:30	
	End			July 10, 2023 13:15	August 28, 2023 15:00	October 3, 2023 14:30	November 21, 2023 11:20	
Stephenville Nitrogen Dioxide (NO ₂)	ppb	106	-	<0.2 ^A	N/A	0.7	1.3 ^D	<0.7
Grand Falls-Windsor NO ₂ ^E				0.7		1.5	N/A	1.1 ^C
Stephenville Sulphur Dioxide (SO ₂)	ppb	115	-	0.3	N/A	0.1	0.1	0.2
Stephenville Ammonia (NH ₃)	ppb	144	-	<0.2 ^A	<0.2 ^A	N/A	<0.1 ^B	<0.2

Notes:
Averages are reported as "less than" where some of the tests were below the minimum detection limit of the laboratory
"-" No applicable regulatory criteria.
N/A Contaminant not sampled or NAPS data not available
A Measured concentration was below the laboratory's reportable detection limit of 0.2
B Measured concentration was below the laboratory's reportable detection limit of 0.1
C NO₂ data unavailable for November sampling, average is calculated with June and September sampling.
D November blank NO₂ sample was compromised by the lab, value presented was not blank adjusted.
E Raw data from the Grand Falls-Windsor air monitoring station during the conducted monitoring were provided by Barrie Lawrence of the NL ECC.
Ppb Parts per billion

PROJECT NUJIO'QONIK: BASELINE AMBIENT AIR QUALITY MONITORING STUDY

Table 4-8 Ambient Air Monitoring Results for NO₂, and SO₂ – West Bay 2023

Air Contaminant	Units	Regulatory Criteria for the 24-hour Time Averaging Period		Sampling Date			Average
		Newfoundland Ambient Air Quality Standards (NL AAQS)	Canadian Ambient Air Quality Standards (CAAQS)	June 2023	September 2023	November 2023	
Sampling Period	Start			June 26, 2023 17:30	September 19, 2023 13:40	November 6, 2023 16:16	
	End			July 10, 2023 15:00	October 3, 2023 16:00	November 21, 2023 12:51	
West Bay Nitrogen Dioxide (NO ₂)	ppb	106	-	<0.2 ^A	<0.1 ^B	NR	<0.2
Grand Falls-Windsor NO ₂ ^D				0.7	1.6	N/A	1.2 ^C
West Bay Sulphur Dioxide (SO ₂)	ppb	115	-	0.3	0.2	<0.1 ^B	<0.2

Notes:
Averages are reported as "less than" where some of the tests were below the minimum detection limit of the laboratory
"-" No applicable regulatory criteria.
NR NO₂ sample was compromised in the lab during sample preparation and is not reportable.
N/A NAPS data not available
A Measured concentration was below the laboratory's reportable detection limit of 0.2
B Measured concentration was below the laboratory's reportable detection limit of 0.1
C NO₂ data unavailable for November sampling, average is calculated with June and September sampling.
D Raw data from the Grand Falls-Windsor air monitoring station during the conducted monitoring were provided by Barrie Lawrence of the NL ECC.
Ppb Parts per billion

PROJECT NUJIO'QONIK: BASELINE AMBIENT AIR QUALITY MONITORING STUDY

A total of 15 passive air samplers were deployed to represent the seasonal variation of NO₂, SO₂, and NH₃ from June to November 2023 at the Stephenville Airport and in West Bay.

NO₂, SO₂, and NH₃ were collected at the Stephenville Airport monitoring location for each season, June (spring), August/September/October (summer), November (fall/winter) over a period of 2-weeks.

NO₂ and SO₂ was collected at the West Bay monitoring location for each season, June (spring), September/October (summer), November (fall/winter) over a period of 2-weeks. The NO₂ sample collected in West Bay during November was compromised in the BV laboratory during sample preparation and therefore was unable to be analyzed, leaving two valid NO₂ samples for West Bay. The November NO₂ blank sample was also compromised in the BV laboratory during sample preparation and a blank correction was not performed on the NO₂ November Stephenville Airport sample. The NO₂ November Airport results (uncorrected) were still conservatively presented; however, the result could be lower than 1.3 ppb had it been blank adjusted. Resampling during winter conditions will occur in February, 2024 for the Stephenville Airport NO₂ sample, the West Bay NO₂ sample, and associated NO₂ blank, to have proper blank-adjusted data for each site. A revised report will be issued once these results are available and analyzed.

The results of the ambient air monitoring for NO₂, SO₂, and NH₃ were compared to the regulatory criteria in the NL AAQS and the NO₂ results were compared to Grand Falls-Windsor NAPS air monitoring station results for the same time period. SO₂ and NH₃ were not monitored at the Grand Falls-Windsor NAPS air monitoring station during this time period. NO₂ results from the Grand Falls-Windsor air monitoring station are also unavailable for November.

The results of the 2023 ambient air monitoring at the Stephenville airport ranged from <0.2 ppb (non-detect) to 1.3 ppb for NO₂, 0.1 ppb to 0.3 ppb for SO₂, and were all non-detects for NH₃. The average measured concentrations at the Stephenville Airport were <0.7 ppb for NO₂, 0.2 ppb for SO₂, and <0.2 for NH₃. The measured concentrations for NO₂ were <0.2 ppb (non-detect) for the spring, 0.7 ppb for the summer, and 1.3 ppb for the fall/winter. As previously noted, the values for the November NO₂ sample were not blank-adjusted. The measured concentrations for SO₂ were 0.3 ppb for the spring, 0.1 ppb for the summer, and 0.1 ppb for the fall/winter. The measured concentrations for NH₃ were non-detects in all three seasons. The seasonal high was measured in the fall/winter for NO₂ and in the spring for SO₂.

NO₂, SO₂, and NH₃ were measured over a period of 2-weeks however the regulatory criteria is based on a 24-hour period. As the 2-week average samples are well below the 24-hour regulatory criteria, it is not likely that the 24-hour criteria would have been exceeded during the sampling periods. The results of the ambient air monitoring for NO₂, SO₂, and NH₃ were therefore considered to be below the threshold limits in the NL AAQS of 106 ppb for NO₂, 115 ppb for SO₂, and 144 ppb for NH₃. The average measured concentrations of NO₂ at the Grand Falls-Windsor NAPS air monitoring station were 0.7 ppb in June and 1.5 ppb in September, both trending above the concentrations measured by Stantec. The average measured concentration of SO₂ of 0.2 ppb is below the average annual concentrations measured at the Grand Falls-Windsor air monitoring station in 2021 and 2022 of 0.7 and 0.8 ppb respectively.

The results of the 2023 ambient air monitoring in West Bay were all non-detects for NO₂ and ranged from <0.1 ppb (non-detect) to 0.3 ppb for SO₂. The average measured concentrations in West Bay were <0.2 ppb for NO₂, and <0.2 ppb for SO₂. The measured concentrations for NO₂ were non-detects for the spring and summer, while the fall/winter sample was compromised at the laboratory. The measured concentrations for SO₂ were 0.3 ppb for the spring, 0.2 ppb for the summer, and <0.1 ppb (non-detect) for the fall/winter. The seasonal high was measured in the spring for SO₂, similar to the Stephenville Airport.

NO₂ and SO₂ were measured over a period of two weeks; however, the regulatory criteria is based on a 24-hour period. As the two week average samples are well below the 24-hour regulatory criteria it is not likely that the 24-hour criteria would have been exceeded during the sampling periods. The results of the ambient air monitoring for NO₂ and SO₂ were therefore considered to be below the threshold limits in the NL AAQS of 106 ppb for NO₂ and 115 ppb for SO₂. The average measured concentrations of NO₂ at Grand Falls-Windsor NAPS air monitoring station were 0.7 in June and 1.6 ppb in September, both trending above the concentrations measured by Stantec. The average measured concentration of SO₂ of <0.2 ppb is below the average annual concentrations measured at the Grand Falls-Windsor air monitoring station in 2021 and 2022 of 0.7 and 0.8 ppb respectively.

5.0 SUMMARY AND DISCUSSION OF RESULTS

Sampling was conducted at the Stephenville Airport and in West Bay in order to measure the seasonal variation (spring, summer, fall/winter) of the air contaminants (PM₁₀, PM_{2.5}, NO₂, SO₂, and NH₃. NH₃ was only sampled at the Stephenville Airport)).

A total of eighteen samples of PM₁₀ were collected at the Stephenville Airport and in West Bay. Three samples were collected at each monitoring location for each season, June (spring), August (summer), November (fall/winter) over a period of 24-hours.

- The results of the 2023 ambient air monitoring for PM₁₀ at the Stephenville airport ranged from <3 $\mu\text{g}/\text{m}^3$ (non-detect) to 27 $\mu\text{g}/\text{m}^3$ and the average was <10 $\mu\text{g}/\text{m}^3$.
- The results of the 2023 ambient air monitoring for PM₁₀ in West Bay ranged from <3 $\mu\text{g}/\text{m}^3$ (non-detect) to 36 $\mu\text{g}/\text{m}^3$ and the average was <15 $\mu\text{g}/\text{m}^3$.
- The results of the 2023 ambient air monitoring at the provincially run Grand Falls-Windsor NAPS air monitoring station ranged from 5 $\mu\text{g}/\text{m}^3$ to 22 $\mu\text{g}/\text{m}^3$ and the average was 11 $\mu\text{g}/\text{m}^3$.

All PM₁₀ samples were therefore below the threshold limits in the NL AAQS of 50 $\mu\text{g}/\text{m}^3$.

PROJECT NUJIO'QONIK: BASELINE AMBIENT AIR QUALITY MONITORING STUDY

A total of eighteen samples of PM_{2.5} were collected at the Stephenville Airport and in West Bay. Three samples were collected at each monitoring location for each season, June (spring), August (summer), November (fall/winter) over a period of 24-hours.

- The results of the 2023 ambient air monitoring at the Stephenville airport ranged from 0.8 µg/m³ to 5.2 µg/m³ and the average was 2.8 µg/m³.
- The results of the 2023 ambient air monitoring at West Bay ranged from 1.7 µg/m³ to 16.1 µg/m³ and the average was 4.7 µg/m³.
- The results of the 2023 ambient air monitoring at the provincially run Grand Falls-Windsor NAPS air monitoring station ranged from 1.9 µg/m³ to 6.0 µg/m³ and the average was 3.2 µg/m³.

All PM_{2.5} samples were therefore below the threshold limits in the NL AAQS of 25 µg/m³.

A total of 15 badges were deployed from June to November 2023 at the Stephenville Airport and in West Bay.

- The results of the 2023 ambient air monitoring at the Stephenville airport ranged from <0.2 ppb (non-detect) to 1.3 ppb for NO₂, 0.1 ppb to 0.3 ppb for SO₂, and were all non-detects for NH₃.
- The results of the 2023 ambient air monitoring in West Bay were all non-detects for NO₂ and ranged from <0.1 ppb (non-detect) to 0.3 ppb for SO₂.

NO₂, SO₂, and NH₃ are measured over a period of two weeks and the regulatory criteria is based on a 24-hour period. As the two week sample is well below the 24-hour regulatory criteria, it is not likely that the 24-hour criteria would have been exceeded during the sampling periods. The results of the ambient air monitoring for NO₂, SO₂, and NH₃ were therefore considered to be below the threshold limits in the NL AAQS of 106 ppb for NO₂, 115 ppb for SO₂, and 144 for NH₃.

The data collected during the 2023 monitoring field program are relatively consistent with the background concentration values used in the EA to predict ground level concentrations during the operation phase of the Project. Both the concentration data collected during the field program and the background concentration values used in the EA were well below respective regulatory criteria, with the average concentration values collected at each of the stations for each species being lower than the background concentration values used in the EA. This indicates that the background concentrations used in the EA are sufficiently representative of the background air quality in the area.

6.0 REFERENCES

CCME (Canadian Council of Ministers of the Environment). 2019. Guidance Document on Air Zone Management. Accessed at: https://ccme.ca/en/res/guidancedocumentonairzonemanagement_secured.pdf

CCME. 2022. Canadian Ambient Air Quality Standards. Accessed at: <https://ccme.ca/en/air-quality-report>

ECCC (Environment and Climate Change Canada). 2013. Common pollutants: ammonia. Accessed at: <https://www.canada.ca/en/environment-climate-change/services/air-pollution/pollutants/common-contaminants/ammonia.html>

ECCC. 2023. National Pollutant Release Inventory. Accessed at: <https://pollution-waste.canada.ca/national-release-inventory/>

ECCC. 2023b. Stephenville Airport Historical Data. Accessed at: https://climate.weather.gc.ca/climate_data/hourly_data_e.html?hlyRange=2014-09-30%7C2024-01-10&dlyRange=2014-10-02%7C2024-01-10&mlyRange=%7C&StationID=52759&Prov=NL&urlExtension=_e.html&searchType=stnName&optLimit=yearRange&StartYear=1840&EndYear=2024&selRowPerPage=25&Line=1&searchMethod=contains&Month=1&Day=10&txtStationName=stephenville&timeframe=1&Year=2024

GNL (Government of Newfoundland and Labrador). 2010. Guidance Document: Guidelines for Ambient Air Monitoring. Accessed at: <https://www.gov.nl.ca/ecc/files/env-protection-science-gd-ppd-065.pdf>

GNL. 2022. Newfoundland and Labrador Regulation 11/22 Air Pollution Control Regulations, 2022 under the Environmental Protection Act. Accessed at: <https://www.assembly.nl.ca/Legislation/sr/regulations/rc220011.htm>

NL ECC (Newfoundland and Labrador Environment and Climate Change). 2022. Environmental Impact Statement Guidelines. Port au Port-Stephenville Wind Power and Hydrogen Generation Project (Project Nujio'qonik GH2). Accessed at: https://www.gov.nl.ca/ecc/files/env_assessment_y2022-2202-Approved-EIS-Guidelines.pdf

NL ECC. 2023. 2022 Ambient Air Monitoring Report. Accessed at: <https://www.gov.nl.ca/ecc/files/2022-Air-Quality-Annual-Report.pdf>

NL ECC. 2023. Raw ambient air monitoring data from the Grand Falls-Windsor Station. Provided by Barrie Lawrence, Senior Environmental Scientist

Statistics Canada. 2023. (table). Census Profile. 2021 Census of Population. Statistics Canada Catalogue no. 98-316-X2021001. Ottawa. Released November 15, 2023. Accessed at: <https://www12.statcan.gc.ca/census-recensement/2021/dp-pd/prof/index.cfm?Lang=E> (accessed January 11, 2024).

PROJECT NUJIO'QONIK: BASELINE AMBIENT AIR QUALITY MONITORING STUDY

US EPA (United States Environmental Protection Agency). 1997. Manual Reference Method: Appendix M to Part 50. Reference Method for the Determination of Particulate Matter as PM₁₀ in the Atmosphere. Federal Register: Vol 62, page 38714.

US EPA. 1998. Manual Reference Method: RFPS-0498-116. Federal Register: Vol. 63, page 18911. Last modified 12/2016

WHO. 2023. Air Quality and Health: Type of Pollutants. Accessed at:
<https://www.who.int/teams/environment-climate-change-and-health/air-quality-and-health/health-impacts/types-of-pollutants>

APPENDIX A

Laboratory Analysis Reports

CLIENT NAME: STANTEC CONSULTING LTD
P.O. BOX 38212
DARTMOUTH, NS B3B1X2
(902) 468-7777

ATTENTION TO: Emma MacNeil

PROJECT: 121417575

AGAT WORK ORDER: 23X043584

OCCUPATIONAL HYGIENE REVIEWED BY: Ashleigh Dussault, Inorganics Laboratory Supervisor

DATE REPORTED: Jul 25, 2023

PAGES (INCLUDING COVER): 6

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (902) 468-8718

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

Certificate of Analysis

AGAT WORK ORDER: 23X043584

PROJECT: 121417575

11 Morris Drive, Unit 122
Dartmouth, Nova Scotia
CANADA B3B 1M2
TEL (902)468-8718
FAX (902)468-8924
<http://www.agatlabs.com>

CLIENT NAME: STANTEC CONSULTING LTD

SAMPLING SITE:

ATTENTION TO: Emma MacNeil

SAMPLED BY:

Stantec - Particulate - PM10

DATE RECEIVED: 2023-07-05

DATE REPORTED: 2023-07-25

PM10-976-2023- PM10-977-2023- PM10-976-2023- PM10-977-2023- PM10-976-2023- PM10-977-2023-

SAMPLE DESCRIPTION:	06-26	06-26	06-27	06-27	06-28	06-28
SAMPLE TYPE:	Air	Air	Air	Air	Air	Air
DATE SAMPLED:	2023-06-26	2023-06-26	2023-06-27	2023-06-27	2023-06-28	2023-06-28

Parameter	Unit	G / S	RDL	5119421	5119429	5119432	5119433	5119436	5119437
Particulate - PM10	µg/m3		3	9	<3	18	6	36	9
Volume of air sampled - PM10	m3			1693.437	1699.485	1644.292	1649.683	1627.039	1676.982

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

5119421-5119437 Volume of air sampled is provided by the client. AGAT is not responsible for any effect on the data related to information supplied by the client.

Analysis performed at AGAT Halifax (unless marked by *)

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 23X043584

PROJECT: 121417575

11 Morris Drive, Unit 122
Dartmouth, Nova Scotia
CANADA B3B 1M2
TEL (902)468-8718
FAX (902)468-8924
<http://www.agatlabs.com>

CLIENT NAME: STANTEC CONSULTING LTD

SAMPLING SITE:

ATTENTION TO: Emma MacNeil

SAMPLED BY:

Stantec - Particulate - PM2.5

DATE RECEIVED: 2023-07-05

DATE REPORTED: 2023-07-25

		SAMPLE DESCRIPTION:		PQ200-1392-	PQ200-1747-	PQ200-1392-	PQ200-1747-	PQ200-1392-	PQ200-1747-
Parameter	Unit	G / S	RDL	2023-06-26	2023-06-26	2023-06-27	2023-06-27	2023-06-28	2023-06-28
Particulate PM 2.5	ug/m3		0.5	2.9	1.7	1.7	1.7	5.2	5.5
Volume of air sampled - PM2.5	m3			23.99382	24.18408	23.58807	23.41581	23.26817	23.58807

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

5119430-5119439 Volume of air sampled is provided by the client. AGAT is not responsible for any effect on the data related to information supplied by the client.

Analysis performed at AGAT Halifax (unless marked by *)

Ashleigh
Dussalt

Certified By:

Method Summary

CLIENT NAME: STANTEC CONSULTING LTD

PROJECT: 121417575

SAMPLING SITE:

AGAT WORK ORDER: 23X043584

ATTENTION TO: Emma MacNeil

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Occupational Hygiene Analysis			
Particulate - PM10	INOR-121-6041	EPA Method 5	GRAVIMETRIC
Volume of air sampled - PM10			
Particulate PM 2.5	AQM-43-16002	NIOSH-0500	N/A
Volume of air sampled - PM2.5			

BUREAU
VERITAS

Your Project #: 121417575
 Site#: 2023/06/26 - 2023/07/10
 Site Location: World Energy Passive Monitoring Project
 Coding # NSD016400

Attention: VICKI CORNING

STANTEC CONSULTING LTD
 845 Prospect Street
 Fredericton, NB
 CANADA E3B 2T7

Report Date: 2023/07/28
Report #: R3373022
Version: 1 - Final

CERTIFICATE OF ANALYSIS**BUREAU VERITAS JOB #: C355776****Received: 2023/07/20, 13:30**Sample Matrix: Air
 # Samples Received: 2

Analyses	Quantity	Date Extracted	Date Analyzed	Laboratory Method	Analytical Method
NH3 by Passive Sampler	1	2023/07/26	N/A	PTC SOP-00157	ASTM D6919
NO2 Passive Analysis	2	2023/07/26	2023/07/28	PTC SOP-00148	Passive NO2 in ATM
SO2 Passive Analysis	2	2023/07/24	2023/07/28	PTC SOP-00149	Passive SO2 in ATM

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025:2017 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as ASTM, CGSB, EN, GPA and/or SM. If not provided with the results, identification of the reference method or Bureau Veritas SOP is available upon request.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of the samples provided by the Client using the testing methodology referenced in this report.

Measurement Uncertainty has not been accounted for when stating conformity to any referenced standard. Interpretation and use of the test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. When sampling is not conducted by Bureau Veritas, results apply only to the sample(s) as received. Bureau Veritas is not responsible for the accuracy or any data impacts that result from the information provided by the customer or on the clients behalf by their agent.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Results relate only to the items tested.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Delma Eisiente
 Customer Service Associate
 11 Jul 2023 08:12:43

Please direct all questions regarding this Certificate of Analysis to:

Customer Service Passives,
 Email: PassiveAir@bureauveritas.com
 Phone# (780) 378-8500

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Branko Banjac, General Manager responsible for Alberta Petroleum laboratory operations.

Bureau Veritas Job #: C355776

Report Date: 2023/07/28

STANTEC CONSULTING LTD

Client Project #: 121417575

Site Location: World Energy Passive Monitoring Project

Sampler Initials: MA

RESULTS OF CHEMICAL ANALYSES OF AIR

Bureau Veritas ID		BVE733	BVE740		
Sampling Date		2023/06/26 13:30	2023/06/26 13:30		
	UNITS	BAD-AIRPORT-2023-06-26	BAD-WB-2023-06-26	RDL	QC Batch
Passive Monitoring					
Ammonia by Passive Sampler	ppb	<0.2	N/A	0.2	B047952
Calculated NO2	ppb	<0.2	<0.2	0.2	B047884
Calculated SO2	ppb	0.3	0.3	0.2	B042896
RDL = Reportable Detection Limit					
N/A = Not Applicable					

Bureau Veritas Job #: C355776
Report Date: 2023/07/28

STANTEC CONSULTING LTD
Client Project #: 121417575
Site Location: World Energy Passive Monitoring Project
Sampler Initials: MA

GENERAL COMMENTS

Results relate only to the items tested.

Bureau Veritas Job #: C355776

Report Date: 2023/07/28

STANTEC CONSULTING LTD

Client Project #: 121417575

Site Location: World Energy Passive Monitoring Project

Sampler Initials: MA

QUALITY ASSURANCE REPORT

QA/QC	Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
	B042896	OZ	Spiked Blank	Calculated SO2			99	%	90 - 110
	B042896	OZ	Method Blank	Calculated SO2		<0.1		ppb	
	B047884	SDK	Spiked Blank	Calculated NO2			102	%	90 - 110
	B047884	SDK	Method Blank	Calculated NO2		<0.1		ppb	
	B047952	SDK	Spiked Blank	Ammonia by Passive Sampler			99	%	90 - 110
	B047952	SDK	Method Blank	Ammonia by Passive Sampler		<0.1		ppb	
	B047952	SDK	RPD [BVE733-01]	Ammonia by Passive Sampler		NC		%	N/A

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference $\leq 2 \times$ RDL).

Bureau Veritas Job #: C355776

Report Date: 2023/07/28

STANTEC CONSULTING LTD

Client Project #: 121417575

Site Location: World Energy Passive Monitoring Project

Sampler Initials: MA

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Yang Liu, Laboratory Supervisor

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

CLIENT NAME: STANTEC CONSULTING LTD
P.O. BOX 38212
DARTMOUTH, NS B3B1X2
(902) 468-7777

ATTENTION TO: Emma MacNeil

PROJECT: 121417575

AGAT WORK ORDER: 23X062204

OCCUPATIONAL HYGIENE REVIEWED BY: Ashleigh Dussault, Inorganics Laboratory Supervisor

DATE REPORTED: Sep 12, 2023

PAGES (INCLUDING COVER): 6

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (902) 468-8718

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

Certificate of Analysis

AGAT WORK ORDER: 23X062204

PROJECT: 121417575

11 Morris Drive, Unit 122
Dartmouth, Nova Scotia
CANADA B3B 1M2
TEL (902)468-8718
FAX (902)468-8924
<http://www.agatlabs.com>

CLIENT NAME: STANTEC CONSULTING LTD

SAMPLING SITE:

ATTENTION TO: Emma MacNeil

SAMPLED BY:

Stantec - Particulate - PM10

DATE RECEIVED: 2023-08-28

DATE REPORTED: 2023-09-12

PM10-976-2023- PM10-977-2023- PM10-976-2023- PM10-977-2023- PM10-976-2023- PM10-977-2023-

SAMPLE DESCRIPTION:	08-15	08-15	08-16	08-16	08-17	08-17
SAMPLE TYPE:	Air	Air	Air	Air	Air	Air
DATE SAMPLED:	2023-08-15	2023-08-15	2023-08-16	2023-08-16	2023-08-17	2023-08-17

Parameter	Unit	G / S	RDL	5242745	5242747	5242748	5242749	5242750	5242751
Particulate - PM10	µg/m3		3	4	14	5	<3	8	<3
Volume of air sampled - PM10	m3			1765.900	1658.718	1645.986	1666.535	1643.256	1803.454

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

5242745-5242751 Volume of air sampled is provided by the client. AGAT is not responsible for any effect on the data related to information supplied by the client.

Analysis performed at AGAT Halifax (unless marked by *)

Ashleigh
Dussalt

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 23X062204

PROJECT: 121417575

11 Morris Drive, Unit 122
Dartmouth, Nova Scotia
CANADA B3B 1M2
TEL (902)468-8718
FAX (902)468-8924
<http://www.agatlabs.com>

CLIENT NAME: STANTEC CONSULTING LTD

SAMPLING SITE:

ATTENTION TO: Emma MacNeil

SAMPLED BY:

Stantec - Particulate - PM2.5

Stantec - Particulate - PM2.5						DATE REPORTED: 2023-09-12	
DATE RECEIVED: 2023-08-28							
		PQ200-1392-	PQ200-1747-	PQ200-1392-	PQ200-1747-	PQ200-1392-	PQ200-1747-

SAMPLE DESCRIPTION:	2023-08-14	2023-08-14	2023-08-15	2023-08-15	2023-08-16	2023-08-16
---------------------	------------	------------	------------	------------	------------	------------

SAMPLE TYPE:	Air	Air	Air	Air	Air	Air
--------------	-----	-----	-----	-----	-----	-----

DATE SAMPLED:	2023-08-14	2023-08-14	2023-08-15	2023-08-15	2023-08-16	2023-08-16
---------------	------------	------------	------------	------------	------------	------------

Parameter	Unit	G / S	RDL	5242753	5242754	5242755	5242756	5242757	5242758
Particulate PM 2.5	ug/m3		0.5	1.7	4.7	2.5	2.6	2.9	1.3

Volume of air sampled - PM2.5	m3			23.31218	25.54307	23.60614	23.45312	23.86071	23.61576
-------------------------------	----	--	--	----------	----------	----------	----------	----------	----------

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

5242753-5242758 Volume of air sampled is provided by the client. AGAT is not responsible for any effect on the data related to information supplied by the client.
Filters ID 5242756 and 5242758 have been received with a tear.

Analysis performed at AGAT Halifax (unless marked by *)

Certified By:

Method Summary

CLIENT NAME: STANTEC CONSULTING LTD

PROJECT: 121417575

SAMPLING SITE:

AGAT WORK ORDER: 23X062204

ATTENTION TO: Emma MacNeil

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Occupational Hygiene Analysis			
Particulate - PM10	INOR-121-6041	EPA Method 5	GRAVIMETRIC
Volume of air sampled - PM10			
Particulate PM 2.5	AQM-43-16002	NIOSH-0500	N/A
Volume of air sampled - PM2.5			

Your Project #: 121417575
Site#: 2023/08/14 - 2023/08/28
Site Location: World Energy Passive Monitoring Project

Attention: EMMA MACNEIL

STANTEC CONSULTING LTD
845 Prospect Street
Fredericton, NB
CANADA E3B 2T7

Report Date: 2023/09/22
Report #: R3399503
Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C371646

Received: 2023/09/12, 10:52

Sample Matrix: Air
Samples Received: 1

Analyses	Quantity	Date Extracted	Date Analyzed	Laboratory Method	Analytical Method
NH3 by Passive Sampler	1	2023/09/18	N/A	PTC SOP-00157	ASTM D6919

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025:2017 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as ASTM, CGSB, EN, GPA and/or SM. If not provided with the results, identification of the reference method or Bureau Veritas SOP is available upon request.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of the samples provided by the Client using the testing methodology referenced in this report.

Measurement Uncertainty has not been accounted for when stating conformity to any referenced standard. Interpretation and use of the test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. When sampling is not conducted by Bureau Veritas, results apply only to the sample(s) as received. Bureau Veritas is not responsible for the accuracy or any data impacts that result from the information provided by the customer or on the clients behalf by their agent.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Results relate only to the items tested.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to:

Customer Service Passives,
Email: PassiveAir@bureauveritas.com
Phone# (780) 378-8500

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Branko Banjac, General Manager responsible for Alberta Petroleum laboratory operations.

Bureau Veritas Job #: C371646

Report Date: 2023/09/22

STANTEC CONSULTING LTD

Client Project #: 121417575

Site Location: World Energy Passive Monitoring Project

Sampler Initials: MA

RESULTS OF CHEMICAL ANALYSES OF AIR

Bureau Veritas ID		BYT641		
Sampling Date		2023/08/14 00:00		
	UNITS	NH3-2023-08-14-SA	RDL	QC Batch
Passive Monitoring				
Ammonia by Passive Sampler	ppb	<0.2	0.2	B111910
RDL = Reportable Detection Limit				

Bureau Veritas Job #: C371646

Report Date: 2023/09/22

STANTEC CONSULTING LTD

Client Project #: 121417575

Site Location: World Energy Passive Monitoring Project

Sampler Initials: MA

GENERAL COMMENTS

Results relate only to the items tested.

Bureau Veritas Job #: C371646

Report Date: 2023/09/22

STANTEC CONSULTING LTD

Client Project #: 121417575

Site Location: World Energy Passive Monitoring Project

Sampler Initials: MA

QUALITY ASSURANCE REPORT

QA/QC			Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
Batch	Init	QC Type						
B111910	SDK	Spiked Blank	Ammonia by Passive Sampler			97	%	90 - 110
B111910	SDK	Method Blank	Ammonia by Passive Sampler		<0.1		ppb	
Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.								
Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.								

Bureau Veritas Job #: C371646

Report Date: 2023/09/22

STANTEC CONSULTING LTD

Client Project #: 121417575

Site Location: World Energy Passive Monitoring Project

Sampler Initials: MA

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Steven Gloux, Senior Analyst

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Branko Banjac, General Manager responsible for Alberta Petroleum laboratory operations.

Your Project #: 121417575
Site#: 2023/09/19 - 2023/10/03
Site Location: World Energy Passive Monotoring Project

Attention: VICKI CORNING

STANTEC CONSULTING LTD
845 Prospect Street
Fredericton, NB
CANADA E3B 2T7

Report Date: 2023/11/23
Report #: R3430935
Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C392901

Received: 2023/11/14, 08:43

Sample Matrix: Air
Samples Received: 2

Analyses	Quantity	Date Extracted	Date Analyzed	Laboratory Method	Analytical Method
NO2 Passive Analysis	2	2023/11/17	2023/11/22	PTC SOP-00148	Passive NO2 in ATM
SO2 Passive Analysis	2	2023/11/21	2023/11/22	PTC SOP-00149	Passive SO2 in ATM

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025:2017 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as ASTM, CGSB, EN, GPA and/or SM. If not provided with the results, identification of the reference method or Bureau Veritas SOP is available upon request.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of the samples provided by the Client using the testing methodology referenced in this report.

Measurement Uncertainty has not been accounted for when stating conformity to any referenced standard. Interpretation and use of the test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. When sampling is not conducted by Bureau Veritas, results apply only to the sample(s) as received. Bureau Veritas is not responsible for the accuracy or any data impacts that result from the information provided by the customer or on the clients behalf by their agent.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Results relate only to the items tested.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to:

Customer Service Passives,
Email: PassiveAir@bureauveritas.com
Phone# (780) 378-8500

=====
Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Branko Banjac, General Manager responsible for Alberta Petroleum laboratory operations.

Bureau Veritas Job #: C392901

Report Date: 2023/11/23

STANTEC CONSULTING LTD

Client Project #: 121417575

Site Location: World Energy Passive Monitoring Project

Sampler Initials: MA

RESULTS OF CHEMICAL ANALYSES OF AIR

Bureau Veritas ID		CEL106	CEL116		
Sampling Date		2023/09/19 12:12	2023/09/19 13:40		
	UNITS	SV AIRPORT	93 MAIN WEST BAY	RDL	QC Batch
Passive Monitoring					
Calculated NO2	ppb	0.7	<0.1	0.1	B206731
Calculated SO2	ppb	0.1	0.2	0.1	B206581

RDL = Reportable Detection Limit

Bureau Veritas Job #: C392901

Report Date: 2023/11/23

STANTEC CONSULTING LTD

Client Project #: 121417575

Site Location: World Energy Passive Monitoring Project

Sampler Initials: MA

GENERAL COMMENTS

Results relate only to the items tested.

Bureau Veritas Job #: C392901

Report Date: 2023/11/23

STANTEC CONSULTING LTD

Client Project #: 121417575

Site Location: World Energy Passive Monitoring Project

Sampler Initials: MA

QUALITY ASSURANCE REPORT

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
B206581	OZ	Spiked Blank	Calculated SO2	2023/11/22		100	%	90 - 110
B206581	OZ	Method Blank	Calculated SO2	2023/11/22	<0.1		ppb	
B206731	S1T	Spiked Blank	Calculated NO2			98	%	90 - 110
B206731	S1T	Method Blank	Calculated NO2		<0.1		ppb	

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Bureau Veritas Job #: C392901

Report Date: 2023/11/23

STANTEC CONSULTING LTD

Client Project #: 121417575

Site Location: World Energy Passive Monitoring Project

Sampler Initials: MA

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Steven Gloux, Senior Analyst

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Branko Banjac, General Manager responsible for Alberta Petroleum laboratory operations.

CLIENT NAME: STANTEC CONSULTING LTD
P.O. BOX 38212
DARTMOUTH, NS B3B1X2
(902) 468-7777

ATTENTION TO: Emma MacNeil

PROJECT: 121417575

AGAT WORK ORDER: 23X093448

OCCUPATIONAL HYGIENE REVIEWED BY: Ashleigh Dussault, Inorganics Laboratory Supervisor

DATE REPORTED: Dec 01, 2023

PAGES (INCLUDING COVER): 6

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (902) 468-8718

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

Certificate of Analysis

AGAT WORK ORDER: 23X093448

PROJECT: 121417575

11 Morris Drive, Unit 122
Dartmouth, Nova Scotia
CANADA B3B 1M2
TEL (902)468-8718
FAX (902)468-8924
<http://www.agatlabs.com>

CLIENT NAME: STANTEC CONSULTING LTD

SAMPLING SITE:

ATTENTION TO: Emma MacNeil

SAMPLED BY:

Stantec - Particulate - PM10

DATE RECEIVED: 2023-11-15

DATE REPORTED: 2023-12-01

PM10-001-2023- PM10-001-2023- PM10-001-2023- PM10-002-2023- PM10-002-2023- PM10-002-2023-

SAMPLE DESCRIPTION:	11-06	11-07	11-08	11-06	11-07	11-08
SAMPLE TYPE:	Air	Air	Air	Air	Air	Air
DATE SAMPLED:	2023-11-06	2023-11-07	2023-11-08	2023-11-06	2023-11-07	2023-11-08

Parameter	Unit	G / S	RDL	5461638	5461646	5461647	5461648	5461649	5461650
Particulate - PM10	µg/m3		3	27	18	7	16	6	28
Volume of air sampled - PM10	m3			1744.069	1626.104	1660.951	1744.818	1644.729	1697.410

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

5461638-5461650 Volume of air sampled is provided by the client. AGAT is not responsible for any effect on the data related to information supplied by the client.

Analysis performed at AGAT Halifax (unless marked by *)

Certified By: _____

Certificate of Analysis

AGAT WORK ORDER: 23X093448

PROJECT: 121417575

11 Morris Drive, Unit 122
Dartmouth, Nova Scotia
CANADA B3B 1M2
TEL (902)468-8718
FAX (902)468-8924
<http://www.agatlabs.com>

CLIENT NAME: STANTEC CONSULTING LTD

SAMPLING SITE:

ATTENTION TO: Emma MacNeil

SAMPLED BY:

Stantec - Particulate - PM2.5

DATE RECEIVED: 2023-11-15

DATE REPORTED: 2023-12-01

Stantec - Particulate - PM2.5						
		SAMPLE DESCRIPTION:		PQ200-1392-	PQ200-1392-	PQ200-1392-
		SAMPLE TYPE:		2023-11-06	2023-11-07	2023-11-08
Parameter		DATE SAMPLED:	Parameter	2023-11-06	2023-11-07	2023-11-08
Particulate PM 2.5	ug/m3	DATE SAMPLED:	G / S	5461651	5461674	5461675
Volume of air sampled - PM2.5	m3		RDL	0.5	4.8	5.4
				24.91363	24.15173	24.18169
					27.82331	24.05589
						23.98167

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

5461651-5461678 Volume of air sampled is provided by the client. AGAT is not responsible for any effect on the data related to information supplied by the client.

Analysis performed at AGAT Halifax (unless marked by *)

Ashleigh
Dussalt

Certified By:

Method Summary

CLIENT NAME: STANTEC CONSULTING LTD

PROJECT: 121417575

SAMPLING SITE:

AGAT WORK ORDER: 23X093448

ATTENTION TO: Emma MacNeil

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Occupational Hygiene Analysis			
Particulate - PM10	INOR-121-6041	EPA Method 5	GRAVIMETRIC
Volume of air sampled - PM10			
Particulate PM 2.5	AQM-43-16002	NIOSH-0500	N/A
Volume of air sampled - PM2.5			

Attention: VICKI CORNING

STANTEC CONSULTING LTD
845 Prospect Street
Fredericton, NB
CANADA E3B 2T7

Your P.O. #: 500.300.304
Your Project #: 121417575
Site#: 2023/11/06 - 2023/11/21
Site Location: World Energy Passive Monitoring Project

Report Date: 2024/01/24
Report #: R3455001
Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C3A0081

Received: 2023/12/06, 10:30

Sample Matrix: Air
Samples Received: 2

Analyses	Quantity	Date Extracted	Date Analyzed	Laboratory Method	Analytical Method
NH3 by Passive Sampler	1	2023/12/08	2023/12/08	PTC SOP-00157	ASTM D6919
NO2 Passive Analysis	2	2023/12/11	2023/12/15	PTC SOP-00148	Passive NO2 in ATM
SO2 Passive Analysis	2	2023/12/08	2023/12/15	PTC SOP-00149	Passive SO2 in ATM

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025:2017 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as ASTM, CGSB, EN, GPA and/or SM. If not provided with the results, identification of the reference method or Bureau Veritas SOP is available upon request.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of the samples provided by the Client using the testing methodology referenced in this report.

Measurement Uncertainty has not been accounted for when stating conformity to any referenced standard. Interpretation and use of the test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. When sampling is not conducted by Bureau Veritas, results apply only to the sample(s) as received. Bureau Veritas is not responsible for the accuracy or any data impacts that result from the information provided by the customer or on the clients behalf by their agent.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Results relate only to the items tested.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to:

Customer Service Passives,
Email: PassiveAir@bureauveritas.com
Phone# (780) 378-8500

=====

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Branko Banjac, General Manager responsible for Alberta Petroleum laboratory operations.

Bureau Veritas Job #: C3A0081

Report Date: 2024/01/24

STANTEC CONSULTING LTD

Client Project #: 121417575

Site Location: World Energy Passive Monitoring Project

Your P.O. #: 500.300.304

Sampler Initials: MA

RESULTS OF CHEMICAL ANALYSES OF AIR

Bureau Veritas ID		CGE921	CGE923		
Sampling Date		2023/11/06 13:30	2023/11/06 16:16		
	UNITS	SV AIRPORT	93 MAIN WEST BAY	RDL	QC Batch
Passive Monitoring					
Ammonia by Passive Sampler	ppb	<0.1	N/A	0.1	B227965
Calculated NO2	ppb	1.3	NA	0.1	B231938
Calculated SO2	ppb	0.1	<0.1	0.1	B227786
RDL = Reportable Detection Limit					
N/A = Not Applicable					

Bureau Veritas Job #: C3A0081

Report Date: 2024/01/24

STANTEC CONSULTING LTD

Client Project #: 121417575

Site Location: World Energy Passive Monitoring Project

Your P.O. #: 500.300.304

Sampler Initials: MA

GENERAL COMMENTS

Sample CGE921 [SV AIRPORT] : CGE923 NO2 Travel Blank compromised during sample preparation.

CGE921 NO2 result is not blank subtracted. 2024/01/24 SDK

Sample CGE923 [93 MAIN WEST BAY] : NO2 CGE923 Sample compromised in the lab during sample preparation. Sample not reportable. No Charge.
S1T (13/12/2023)

Results relate only to the items tested.

Bureau Veritas Job #: C3A0081

Report Date: 2024/01/24

STANTEC CONSULTING LTD

Client Project #: 121417575

Site Location: World Energy Passive Monitoring Project

Your P.O. #: 500.300.304

Sampler Initials: MA

QUALITY ASSURANCE REPORT

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
B227786	OZ	Spiked Blank	Calculated SO2			99	%	90 - 110
B227786	OZ	Method Blank	Calculated SO2		<0.1		ppb	
B227965	SDK	Spiked Blank	Ammonia by Passive Sampler			96	%	90 - 110
B227965	SDK	Method Blank	Ammonia by Passive Sampler		<0.1		ppb	
B231938	S1T	Spiked Blank	Calculated NO2			99	%	90 - 110
B231938	S1T	Method Blank	Calculated NO2		<0.1		ppb	

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Bureau Veritas Job #: C3A0081

Report Date: 2024/01/24

STANTEC CONSULTING LTD

Client Project #: 121417575

Site Location: World Energy Passive Monitoring Project

Your P.O. #: 500.300.304

Sampler Initials: MA

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Steven Gloux, Senior Analyst

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Branko Banjac, General Manager responsible for Alberta Petroleum laboratory operations.

APPENDIX B

Calibration Documents

TE-6070 Calibration Worksheet

Site Information

Location: Stephenville, NL	Site ID: Stephenville Airport	Date: 26-Jun-23
Sampler: TE-6070 PM10	Serial No: PM10-977	Tech: EM

Site Conditions

Barometric Pressure (in Hg): 30.15	Corrected Pressure (mm Hg): 766
Temperature (deg F): 59.0	Temperature (deg K): 288
Average Press. (in Hg): 29.86	Corrected Average (mm Hg): 758
Average Temp. (deg F): 60	Average Temp. (deg K): 289

Calibration Orifice

Make: Tisch	Slope: 1.01960
Model: TE-5028	Intercept: -0.02626
Serial#: 3309	Calibration Due Date: 28-Jun-23

Calibration Data

Plate or Test #	In H2O	Qa *br/>(m ³ /min)	I (chart)	IC (corrected)	Linear Regression
1	9.60	1.889	62.0	38.02	Slope 20.2932
2	3.80	1.198	40.0	24.53	Intercept -0.2055
3	3.40	1.135	38.0	23.30	Corr. Coeff 0.9983
4	3.30	1.118	36.0	22.08	SFR 1.116
5	2.60	0.996	32.0	19.62	SSP 37

*three Qstd readings must be within 36 to 44 cfm
(1.02 to 1.24 m³/min)

of Observations: 5

Calculations

$$Qa = 1/m(Sqrt((H2O)(Ta/Pa))-b)$$

$$IC = I(Sqrt(Ta/Pa))$$

$$SFR = 1.13(Ps/Pa)(Ta/Ts)$$

$$SSP = (m*SFR+b)(Sqrt(Pa/Ta))$$

m = sampler slope
b = sampler intercept

Qa = actual flow rate

SFR = sampler set point flow rate

Tav = daily average temperature

IC = corrected chart response

SSP = sampler chart set point

Pav = daily average pressure

m = calibrator slope

m = sampler slope

I = chart response

b = calibrator intercept

b = sampler intercept

Ta = actual temperature (deg K)

Ta = actual temperature (deg K)

Pa = actual pressure (mm Hg)

Pa = actual pressure (mm Hg)

For subsequent calculation

Ts = Average temperature (deg K)

Total flow over sample (m³/min)

of sampler flow: 1/m((I)(Sqrt(Tav/Pav))-b)

Ps = Average pressure (mm Hg)

1.135262662

NOTE: Ensure calibration orifice has been certified within 12 months of use

Average I(chart): 37.0

Average Flow over Sample (m³/min)

1.135262662

Enter Total Time (Hrs): 24.0

Total flow over sample (m³/min)

1634.778234

Total flow over sample (CFM)

57724.01944

PM10-977 cal.

Hi-Vol Field Sheet - PM₁₀ (TE-6070)

Location: Stephenville, NL
 Date: 26-Jun-23
 Time: 12:35
 Personnel: Emman M
 Project number: 121917575
 Sample ID: PM10 calibration
 Filter ID:
 Hi-Vol Serial #: PM10-977
 Install Date:
 Last Calibration Date:

Sample date and times:

Date: _____
 Start: _____
 Stop: _____

Temperature: 59°F
 Pressure: 30.15 Hg
 (for the day the sample was collected)

Hi-Vol Flow Calibrations

Point	Flow Recorder CFM	Manometer Reading in H ₂ O
1	62	4.9 + 4.7
2	40	2.5 + 2.2
3	38.3	1.8 + 1.3
4	38	2.0 + 1.8
5	38.32	1.8 + 1.6

Orifice open
 1.8 + 1.5
 Orifice closed
 1.8 + 0.8

*three Qstd readings must be within 36 to 44 cfm
 (1.02 to 1.24 m³/min) - see calibration spreadsheet

Calibrator Qstd *

Slope: 1.01960
 Intercept: -0.02626
 Date of
 Last Factory Cal: June 28, 2022
 Calculated SSP: 37

Avg Flow Chart

Reading: _____ cfm

*Flow chart recorder should read calculated SSP value
 with filter in place (see calibration sheet for SSP and user
 manual pg 40 for calc procedure) then adjust
 voltage set point screw so flow on chart corresponds
 to SSP value.

Notes:

Set flow to 37 ~~9.8~~ for 1.13 m³/min

* Qstd slope and intercept obtained from TE-5028 orifice calibration sheet (provided with calibrator)

PQ200-1392

Calibration

Field Sheet - PM_{2.5} (PQ-200)

Location: Stephenville Airport
 Date: June 26, 2023
 Time: 11:45 am
 Personnel: MA/EM
 Project number: 121417575

Sample ID: 1
 Filter ID: 1
 Instrument #: PQ200-1392
 Install Date: June 26, 2023
 Last Calibration Date: June 26, 2023

Sample date and times:

Date: 1
 Start: 1
 Stop: 1

Calibration

Date: June 26, 2023
 Time: 11:45 am ->

Temperature: 16°C 59°F
 Pressure: 7 30.15 Hg

Leak Checks (pass or fail)

External ✓
 Internal ✓

int'l SP=192cm Enc'l SP=190cm

*Internal leak check only required if external fails

If leak checks fail, inspect filter cassette and internal o-rings and in down tube

Flow verification

point	Flow setting (lpm)	Delta Cal reading (lpm) *	Temperature (°C) **		Pressure (mm Hg) **	
			PQ200	Delta Cal	PQ200	Delta Cal
1	15	15.1	16.4	19.8	767	767
2	18.4	18.4	18.6	19.1	767	767
3	16.7	16.72	18.2	19.1	767	767

* if flow varies from delta cal adjust using arrow buttons

** temp shouldn't vary more than $\pm 2^{\circ}\text{C}$ and pressure more than $\pm 10 \text{ mm Hg}$, if either vary more then calibration is required

Notes:

Temp/pressure are within 2°C and 10mHg

Calibrated/verified all flow rates/temper/pressure

TE-6070 Calibration Worksheet

Site Information

Location: West Bay, NL	Site ID: 93 R463 West Bay, NL	Date: 26-Jun-23
Sampler: TE-6070 PM10	Serial No: PM10-976	Tech: EM

Site Conditions

Barometric Pressure (in Hg): 30.15	Corrected Pressure (mm Hg): 766
Temperature (deg F): 59.0	Temperature (deg K): 288
Average Press. (in Hg): 29.86	Corrected Average (mm Hg): 758
Average Temp. (deg F): 60	Average Temp. (deg K): 289

Calibration Orifice

Make: Tisch	Slope: 1.01960
Model: TE-5028	Intercept: -0.02626
Serial#: 3309	Calibration Due Date: 28-Jun-23

Calibration Data

Plate or Test #	In H2O	Qa *	I	IC	Linear Regression
		(m3/min)	(chart)	(corrected)	Slope 20.5482
1	8.60	1.790	59.0	36.18	Intercept 0.2013
2	4.00	1.229	44.0	26.98	Corr. Coeff 0.9909
3	3.60	1.167	40.0	24.53	SFR 1.116
4	3.00	1.068	36.0	22.08	SSP 38
5	1.60	0.787	25.0	15.33	

*three Qstd readings must be within 36 to 44 cfm
(1.02 to 1.24 m3/min)

of Observations: 5

Calculations

$$Qa = 1/m(\text{Sqrt}((H2O)(Ta/Pa))-b)$$

$$IC = I(\text{Sqrt}(Ta/Pa))$$

Qa = actual flow rate

IC = corrected chart response

m = calibrator slope

b = calibrator intercept

Ta = actual temperature (deg K)

Pa = actual pressure (mm Hg)

For subsequent calculation

of sampler flow: $1/m((I)(\text{Sqrt}(Tav/Pav))-b)$

$$SFR = 1.13(Ps/Pa)(Ta/Ts)$$

$$SSP = (m*SFR+b)(\text{Sqrt}(Pa/Ta))$$

SFR = sampler set point flow rate

SSP = sampler chart set point

m = sampler slope

b = sampler intercept

Ta = actual temperature (deg K)

Pa = actual pressure (mm Hg)

Ts = Average temperature (deg K)

Ps = Average pressure (mm Hg)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

Average I(chart): 38.0

Average Flow over Sample (m3/min)

1.131408659

Enter Total Time (Hrs): 24.0

Total flow over sample (m3/min)

1629.228469

Total flow over sample (CFM)

57528.05725

NOTE: Ensure calibration orifice has been certified within 12 months of use

PMW - 976 Calibration

Hi-Vol Field Sheet - PM₁₀ (TE-6070)

Location: West Bay, NL
 Date: June 26, 2023
 Time: 4:30 PM
 Personnel: MA/EM
 Project number: 121417575
 Sample ID: 1
 Filter ID:
 Hi-Vol Serial #: PM 10-0976
 Install Date: 1
 Last Calibration Date: 1

Sample date and times:

Date: _____
 Start: _____
 Stop: _____

Temperature: 59°F
 Pressure: 30.15 Hg

(for the day the sample was collected)

Hi-Vol Flow Calibrations

Point	Flow Recorder CFM	Manometer Reading in H ₂ O	
1	51	0.2 4.11	Orifice open
2	44	2.02 2.02	
3	40	1.47 1.3	
4	36	1.57 1.5	
5	15	0.6 0.6	Orifice closed

*three Qstd readings must be within 36 to 44 cfm
(1.02 to 1.24 m³/min) - see calibration spreadsheet

Calibrator Qstd *

Slope: 1.01960
 Intercept: -0.02626
 Date of: _____
 Last Factory Cal: June 28, 2022
 Calculated SSP: 38

Elapsed Time Indicator

Start time: _____

Stop time: _____

Elapsed time: _____

Avg Flow Chart

Reading: _____ cfm

*Flow chart recorder should read calculated SSP value
with filter in place (see calibration sheet for SSP and user
manual pg 40 for calc procedure) then adjust
voltage set point screw so flow on chart corresponds
to SSP value

Notes:

Set to 38 cfm
R = 0.1905

* Qstd slope and intercept obtained from TE-5028 orifice calibration sheet (provided with calibrator)

PQ200-1747 Calibration

Field Sheet - PM_{2.5} (PQ-200)

Location: 93 Main/1d-West Bay
 Date: June 26, 2023
 Time: 4:30 PM
 Personnel: MA/EM
 Project number: 121417575

Sample ID: 1
 Filter ID: 1
 Instrument: PQ200-1747
 Install Date: June 26
 Last Calibration Date: June 26

Sample date and times:

Date: 1
 Start: 1
 Stop: 1

Calibration

Date: June 26, 2023 Temperature: 59°F
 Time: 4:30 PM Pressure: 30.15 Hg

Leak Checks (pass or fail)

External ✓
 Internal

Initial: 105 cm P.W. : 104 cm

*Internal leak check only required if external fails

if leak checks fail, inspect filter cassette and internal o-rings and in down tube

Flow verification

point	Flow setting (lpm)	Delta Cal reading (lpm) *	Temperature (°C) **		Pressure (mm Hg) **	
			PQ200	Delta Cal	PQ200	Delta Cal
1	15	14.92	14.1	15.3	767	766
2	18.4	18.47	16.7	15.5	768	767
3	16.7	16.73	14.6	14.8	768	767

* if flow varies from delta cal adjust using arrow buttons

** temp shouldn't vary more than $\pm 2^\circ\text{C}$ and pressure more than ± 10 mm Hg, if either vary more then calibration is required

Notes:

Used Totalcf for Calibration

Temperature (Pressure / flow rate) were all good

TP within $\pm 2\%$ and $\pm 10\text{mmHg}$

TE-6070 Calibration Worksheet

Site Information

Location: Stephenville,	Site ID: Stephenville Airport	Date: 14-Aug-23
Sampler: TE-6070 PM10	Serial No: PM10-976	Tech: EM

Site Conditions

Barometric Pressure (in Hg): 29.85	Corrected Pressure (mm Hg): 758
Temperature (deg F): 64.4	Temperature (deg K): 291
Average Press. (in Hg): 29.86	Corrected Average (mm Hg): 758
Average Temp. (deg F): 60	Average Temp. (deg K): 289

Calibration Orifice

Make: Tisch	Slope: 1.01723
Model: TE-5028	Intercept: -0.02616
Serial#: 3309	Calibration Due Date: 21-Jul-24

Calibration Data

Plate or Test #	In H2O	Qa *	I	IC (corrected)
1	5.60	1.467	40.0	24.78
2	4.20	1.274	39.0	24.16
3	4.00	1.244	38.0	23.54
4	3.90	1.228	37.0	22.92
5	3.60	1.181	36.0	22.30

*three Qstd readings must be within 36 to 44 cfm
(1.02 to 1.24 m3/min)

of Observations: 5

Calculations

$$Qa = 1/m(\text{Sqrt}((H2O)(Ta/Pa))-b)$$

$$IC = I(\text{Sqrt}(Ta/Pa))$$

$$SFR = 1.13(Ps/Pa)(Ta/Ts)$$

$$SSP = (m*SFR+b)(\text{Sqrt}(Pa/Ta))$$

Qa = actual flow rate
IC = corrected chart response

SFR = sampler set point flow rate
SSP = sampler chart set point

m = calibrator slope

m = sampler slope

b = calibrator intercept

b = sampler intercept

Ta = actual temperature (deg K)

Ta = actual temperature (deg K)

Pa = actual pressure (mm Hg)

Pa = actual pressure (mm Hg)

For subsequent calculation
of sampler flow: $1/m((I)(\text{Sqrt}(Tav/Pav))-b)$

Ts = Average temperature (deg K)
Ps = Average pressure (mm Hg)

NOTE: Ensure calibration orifice has been certified within 12 months of use

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

Average I(chart):	36.0
Average Flow over Sample (m3/min)	1.109823966
Enter Total Time (Hrs):	24.0
Total flow over sample (m3/min)	1598.146511
Total flow over sample (CFM)	56430.55329

CALIBRATION

Hi-Vol Field Sheet - PM₁₀ (TE-6070)

Location: Stephenville Airport
 Date: August 14, 2023
 Time: 10:19 AM
 Personnel: EM. PO
 Project number: 121417575

Sample ID: _____
 Filter ID: _____
 Hi-Vol Serial #: PM10 - 976
 Install Date: August 14, 2023
 Last Calibration Date: August 14, 2023

Sample date and times:

Date: _____
 Start: _____
 Stop: _____

Temperature: 64.4°F
 Pressure: 29.85 Hg
 (for the day the sample was collected)

Hi-Vol Flow Calibrations

Point	Flow Recorder CFM	Manometer Reading in H ₂ O
1	40	5.6
2	39	4.2
3	38	4.0
4	37	3.9
5	36	3.6

Orifice open
Orifice closed

Calibrator Qstd *

Slope: 1.01723
 Intercept: -0.02616
 Date of Last Factory Cal: July 21, 2023
 Calculated SSP: 36

*Three Qstd readings must be within 36 to 44 cfm (1.02 to 1.24 m³/min) - see calibration spreadsheet

Elapsed Time Indicator

Start time: _____

Stop time: _____

Elapsed time: _____

Avg Flow Chart

Reading: _____ cfm

*Flow chart recorder should read calculated SSP value with filter in place (see calibration sheet for SSP and user manual pg 40 for calc procedure) then adjust voltage set point screw so flow on chart corresponds to SSP value.

Notes:

* Qstd slope and intercept obtained from TE-5028 orifice calibration sheet (provided with calibrator)

CALIBRATION

Field Sheet - PM_{2.5} (PQ-200)

Location: Stephenville Airport
 Date: August 14, 2023
 Time: 10:20 AM
 Personnel: E M & P O
 Project number: 1214 17575

Sample date and times:

Sample ID: _____
 Filter ID: _____
 Instrument: PQ200-1747
 Install Date: August 14, 2023
 Last Calibration Date: August 14, 2023

Date: _____
 Start: _____
 Stop: _____

Calibration

Date: August 14, 2023 Temperature: 64.4°F
 Time: 10:20 AM Pressure: 29.85 Hg

Leck Checks (pass or fail)

External ✓
 Internal ✓

*Internal leak check only required if external fails

if leak checks fail, inspect filter cassette and internal o-rings and in down tube

Flow verification

point	Flow setting (lpm)	Delta Cal reading (lpm) *	Temperature (°C) **		Pressure (mm Hg) **	
			PQ200	Delta Cal	PQ200	Delta Cal
1	15	15.05	17.9	17.7	758.5	758
2	18.4	18.43	17.9	17.7	758.5	758
3	16.7	16.73	17.9	17.7	758.5	758

* if flow varies from delta cal adjust using arrow buttons

** temp shouldn't vary more than $\pm 2^{\circ}\text{C}$ and pressure more than ± 10 mm Hg, if either vary more then calibration is required

Notes:

- used BGI tetra cal
 - swap delta cal + PQ200 readings

TE-6070 Calibration

Site Information

Location: West Bay, NL	Site ID: West Bay	Date: 14-Aug-23
Sampler: TE-6070 PM10	Serial No: PM10-977	Tech: EM

Site Conditions

Barometric Pressure (in Hg): 29.85	Corrected Pressure (mm Hg): 758
Temperature (deg F): 64.4	Temperature (deg K): 291
Average Press. (in Hg): 29.86	Corrected Average (mm Hg): 758
Average Temp. (deg F): 60	Average Temp. (deg K): 289

Calibration Orifice

Make: Tisch	Slope: 1.01723
Model: TE-5028	Intercept: -0.02616
Serial#: 3309	Calibration Due Date: 21-Jul-24

Calibration Data

Plate or Test #	In H2O	Qa *	I (chart)	IC (corrected)	Linear Regression
1	4.40	1.303	40.0	24.78	Slope 20.9544
2	4.20	1.274	39.0	24.16	Intercept -2.5697
3	4.00	1.244	38.0	23.54	Corr. Coeff 0.9892
4	3.90	1.228	37.0	22.92	SFR 1.139
5	3.60	1.181	36.0	22.30	SSP 34

*three Qstd readings must be within 36 to 44 cfm
(1.02 to 1.24 m3/min)

of Observations: [5](#)

Calculations

$$Qa = 1/m(\text{Sqrt}((H2O)(Ta/Pa))-b)$$

$$IC = I(\text{Sqrt}(Ta/Pa))$$

$$SFR = 1.13(Ps/Pa)(Ta/Ts)$$

$$SSP = (m*SFR+b)(\text{Sqrt}(Pa/Ta))$$

m = sampler slope
b = sampler intercept

Qa = actual flow rate
IC = corrected chart response
m = calibrator slope
b = calibrator intercept
Ta = actual temperature (deg K)
Pa = actual pressure (mm Hg)
For subsequent calculation
of sampler flow: $1/m(I(\text{chart}) - b)$

SFR = sampler set point flow rate
SSP = sampler chart set point
m = sampler slope
b = sampler intercept
Ta = actual temperature (deg K)
Pa = actual pressure (mm Hg)
Ts = Average temperature (deg K)
Ps = Average pressure (mm Hg)

Tav = daily average temperature
Pav = daily average pressure

Average I(chart): [34.0](#)
Average Flow over Sample (m3/min)

[1.123921367](#)

Enter Total Time (Hrs): [24.0](#)

Total flow over sample (m3/min)

[1618.446768](#)

Total flow over sample (CFM)

[57147.35538](#)

NOTE: Ensure calibration orifice has been certified within 12 months of use

CALIBRATION

Location: West Bay, NL
 Date: August 14, 2023
 Time: 5:00 PM
 Personnel: EM & PD
 Project number: 121417575
 Sample ID: _____
 Filter ID: _____
 Hi-Vol Serial #: PM10-977 CAR
 Install Date: August 14, 2023
 Last Calibration Date: August 14, 2023

Sample date and times:

Date: _____
 Start: _____
 Stop: _____

Temperature: 64.4°F
 Pressure: 29.85 Hg
 (for the day the sample was collected)

Hi-Vol Flow Calibrations

Point	Flow Recorder CFM	Manometer Reading in H ₂ O	
1	40	2.2 + 2.2	Orifice open
2	39	2.1 + 2.1	
3	38	2.0 + 2.0	
4	37	1.9 + 2.0	
5	36	1.9 + 1.7	Orifice closed

*three Qstd readings must be within 38 to 44 cfm
(1.02 to 1.24 m³/min) - see calibration spreadsheet

Calibrator Qstd *

Slope: 1.01723
 Intercept: -0.02616
 Date of
 Last Factory Cal: July 21, 2023
 Calculated SSP: 34.5

Avg Flow Chart

Reading: _____ cfm

*Flow chart recorder should read calculated SSP value
 with filter in place (see calibration sheet for SSP and user
 manual pg 40 for calc procedure) then adjust
 voltage set point screw so flow on chart corresponds
 to SSP value

Notes:

* Qstd slope and Intercept obtained from TE-5028 orifice calibration sheet (provided with calibrator)

CALIBRATION

Field Sheet - PM_{2.5} (PQ-200)

Location: West Bay, NL
 Date: August 14, 2023
 Time: 5:00 PM
 Personnel: EM & PD
 Project number: 121417575

Sample date and times:

Sample ID:
 Filter ID:
 Instrument [PQ200SN 1392]
 Install Date: August 14, 2023
 Last Calibration Date: August 14, 2023

Date:
 Start:
 Stop:

Calibration

Date: August 14th, 2023 Temperature: 64.4°F
 Time: 5:00 PM Pressure: 29.85 Hg

Leak Checks (pass or fail)

External ✓
 Internal ✓

*Internal leak check only required if external fails.

If leak checks fail, inspect filter cassette and internal o-rings and in down tube

Flow verification

point	Flow setting (lpm)	Delta Cal reading (lpm) *	Temperature ('C) **		Pressure (mm Hg) **	
			PQ200	Delta Cal	PQ200	Delta Cal
1	15	15.00	19.5°	20.2	755	757
2	18.4	18.4	19.5	20.5	755	757
3	16.7	16.72	19.6	20.5	755	757

* if flow varies from delta cal adjust using arrow buttons

** temp shouldn't vary more than ± 2°C and pressure more than ± 10 mm Hg, if either vary more then calibration is required

Notes:

TE-6070 Calibration Worksheet

Site Information

Location: STEPHENVILLE AIRPORT
Sampler: TE-6070 PM10

Site ID: 1
Serial No: 977

Date: 6-Nov-23
Tech: MA/MF

Site Conditions

Barometric Pressure (in Hg): 29.94
Temperature (deg F): 72
Average Press. (in Hg): 29.58
Average Temp. (deg F): 66

Corrected Pressure (mm Hg): 760
Temperature (deg K): 295
Corrected Average (mm Hg): 751
Average Temp. (deg K): 292

Calibration Orifice

Make: Tisch Environmental, Inc.
Model: TE-5028A
Serial#: 3309

Slope: 1.01723
Intercept: -0.02616
Calibration Due Date: 21-Jul-24

Calibration Data

Plate or Test #	In H2O	Qa (m ³ /min)	I (chart)	IC (corrected)	Linear Regression
1	3.00	1.087	36.0	22.43	Slope 13.0823
2	3.60	1.188	38.0	23.68	Intercept 8.2475
3	3.80	1.220	39.0	24.30	Corr. Coeff 0.9962
4	4.10	1.266	40.0	24.92	SFR 1.129
5	5.20	1.422	43.0	26.79	SSP 36.95

of Observations: 5

Calculations

Qa = 1/m(Sqrt((H₂O)(Ta/Pa))-b)
IC = I(Sqrt(Ta/Pa))

SFR = 1.13(Ps/Pa)(Ta/Ts)
SSP = (m*SFR+b)(Sqrt(Pa/Ta))

m = sampler slope
b = sampler intercept

Qa = actual flow rate
IC = corrected chart response

SFR = sampler set point flow rate
SSP = sampler chart set point

I = chart response
Tav = daily average temperature
Pav = daily average pressure

m = calibrator slope

m = sampler slope

b = calibrator intercept

b = sampler intercept

Ta = actual temperature (deg K)

Ta = actual temperature (deg K)

Pa = actual pressure (mm Hg)

Pa = actual pressure (mm Hg)

For subsequent calculation
of sampler flow: 1/m((I)(Sqrt(Tav/Pav))-b)

Ts = Average temperature (deg K)
Ps = Average pressure (mm Hg)

Average I(chart): 36.0
Average Flow over Sample (m³/min)

1.084753773

Enter Total Time (Hrs): 24.0

Total flow over sample (m³/min)
1562.045434

Total flow over sample (CFM)
55155.82426

NOTE: Ensure calibration orifice has been certified within 12 months of use

Hi-Vol Field Sheet - PM₁₀ (TE-6070)

Location: Stephenville Airport
 Date: Nov 6/23
 Time: 12:00pm
 Personnel: MA/ME
 Project number: 121413571
 Sample ID: /
 Filter ID: /
 Hi-Vol Serial #: PM10-977
 Install Date: Nov 6
 Last Calibration Date: Nov 6

Sample date and times:

Date: /
 Start: /
 Stop: /

Temperature: 72°F
 Pressure: 29.94 in-Hg had to
calibrate L side
due to
high winds
 (for the day the sample was collected)

Hi-Vol Flow Calibrations

Point	Flow Recorder CFM	Manometer Reading in H ₂ O	
1	36	3.00	Orifice open
2	38	3.60	
3	34	3.80	
4	40	4.1	
5	43	5.2	Orifice closed

*three Qstd readings must be within 36 to 44 cfm
(1 02 to 1 24 m³/min) - see calibration spreadsheet

Calibrator Qstd *

Slope: 1.01723
 Intercept: -0.02616
 Date of Last Factory Cal: July 21/2023
 Calculated SSP: 36.95

Elapsed Time Indicator
 Start time: /
 Stop time: /
 Elapsed time: /

Avg Flow Chart

Reading: _____ cfm

*Flow chart recorder should read calculated SSP value with filter in place (see calibration sheet for SSP and user manual pg 40 for calc procedure) then adjust voltage set point screw so flow on chart corresponds to SSP value

Notes:

$$R^2 = 0.9962$$

Set to 37 cfm for mid-point.

Field Sheet - PM_{2.5} (PQ-200)

Location: Stephenville Airport
 Date: Nov 6/2023
 Time: 12:40 PM
 Personnel: MA/IMF
 Project number: 121417875

Sample ID: 1
 Filter ID: 1
 Instrument #: PQ200 - 1747
 Install Date: Nov 6/2023
 Last Calibration Date: Nov 6/2023

Sample date and times:

Date: 1
 Start: 1
 Stop: 1

Calibration

Date: 12:40 pm
 Time: Nov 6/2023

Temperature: 50°F
 Pressure: 29.81 in. Hg } from weather gdp

Leak Checks (pass or fail)

External ✓
 Internal ✓

*Internal leak check only required if external fails

if leak checks fail, inspect filter cassette and internal o-rings and in down tube

Flow verification

point	Flow setting (lpm)	Delta Cal reading (lpm) *	Temperature ('C) **		Pressure (mm Hg) **	
			PQ200	Delta Cal	PQ200	Delta Cal
1	15	15.03	4.3	4.4	763	760
2	18.4	18.41	4.3	4.4	760	761
3	16.7	16.69	4.7	4.6	763	762

* if flow varies from delta cal adjust using arrow buttons

** temp shouldn't vary more than $\pm 2^\circ\text{C}$ and pressure more than $\pm 10 \text{ mm Hg}$, if either vary more then calibration is required

Notes:

Leak test: 106cm (ctrl = 107cm) - Passed (internal/external)

Temperature is within $\pm 2^\circ\text{C}$ (no need to adjust)
 Pressure is within $\pm 10 \text{ mm Hg}$ (no need to adjust)

TE-6070 Calibration Worksheet

Site Information

Location: West Bay	Site ID: 2	Date: 6-Nov-23
Sampler: TE-6070 PM10	Serial No: 976	Tech: MA/MF

Site Conditions

Barometric Pressure (in Hg): 29.94	Corrected Pressure (mm Hg): 760
Temperature (deg F): 45	Temperature (deg K): 280
Average Press. (in Hg): 29.58	Corrected Average (mm Hg): 751
Average Temp. (deg F): 66	Average Temp. (deg K): 292

Calibration Orifice

Make: Tisch Environmental, Inc.	Slope: 1.01723
Model: TE-5028	Intercept: -0.02616
Serial#: 3309	Calibration Due Date: 21-Jul-24

Calibration Data

Plate or Test #	In H2O	Qa (m ³ /min)	I (chart)	IC (corrected)	Linear Regression
1	3.40	1.126	36.0	21.85	Slope 20.3963
2	3.70	1.174	36.5	22.16	Intercept -1.4319
3	4.10	1.234	39.0	23.67	Corr. Coeff 0.9915
4	4.90	1.347	43.0	26.10	SFR 1.072
5	5.60	1.438	46.0	27.92	SSP 33.65

of Observations: 5

Calculations

$$Qa = 1/m(\text{Sqrt}((H2O)(Ta/Pa))-b)$$

$$IC = I(\text{Sqrt}(Ta/Pa))$$

Qa = actual flow rate

IC = corrected chart response

m = calibrator slope

b = calibrator intercept

Ta = actual temperature (deg K)

Pa = actual pressure (mm Hg)

For subsequent calculation
of sampler flow: $1/m((I)(\text{Sqrt}(Tav/Pav))-b)$

$$SFR = 1.13(Ps/Pa)(Ta/Ts)$$

$$SSP = (m*SFR+b)(\text{Sqrt}(Pa/Ta))$$

SFR = sampler set point flow rate

SSP = sampler chart set point

m = sampler slope

b = sampler intercept

Ta = actual temperature (deg K)

Pa = actual pressure (mm Hg)

Ts = Average temperature (deg K)

Ps = Average pressure (mm Hg)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

$$\text{Average } I(\text{chart}): 34.0$$

$$\text{Average Flow over Sample (m}^3/\text{min})$$

$$1.109213576$$

$$\text{Enter Total Time (Hrs): } 24.0$$

$$\text{Total flow over sample (m}^3/\text{min})$$

$$1597.267549$$

$$\text{Total flow over sample (CFM)}$$

$$56399.51715$$

NOTE: Ensure calibration orifice has been certified within 12 months of use

Hi-Vol Field Sheet - PM₁₀ (TE-6070)

Location: West Bay
 Date: Nov 6/2023
 Time: 17:00
 Personnel: MA/MF
 Project number: 121417575

Sample ID: -
 Filter ID: -
 Hi-Vol Serial #: PM10-976
 Install Date: Nov 6, 23
 Last Calibration Date: Nov 6, 23

Sample date and times:

Date: /
 Start: /
 Stop: /
 Temperature: 45°F
 Pressure: 29.9 ft. Hg
 (for the day the sample was collected)

Hi-Vol Flow Calibrations

Point	Flow Recorder CFM	Manometer Reading in H ₂ O	
1	36	3.4	Orifice open
2	36.5	3.7	
3	39	4.1	
4	43	4.9	
5	46	5.6	Orifice closed

*three Qstd readings must be within 36 to 44 cfm
 (1 02 to 1 24 m³/min) - see calibration spreadsheet

Calibrator Qstd *

Slope: 1.01723
 Intercept: -0.02616
 Date of
 Last Factory Cal: July 21, 2023
 Calculated SSP: 34

Elapsed Time Indicator
 Start time: /
 Stop time: /
 Elapsed time: /

Avg Flow Chart

Reading: / cfm

*Flow chart recorder should read calculated SSP value
 with filter in place (see calibration sheet for SSP and user
 manual pg 40 for calc procedure) then adjust
 voltage set point screw so flow on chart corresponds
 to SSP value

Notes: R² = 0.9915

Set to 34 cfm for mid-point

Calibration

PQ200-1392

Field Sheet - PM_{2.5} (PQ-200)

Location: West Bay
 Date: Nov 6/2023
 Time: 16:00
 Personnel: MA/IMF
 Project number: 121417575

Sample ID: —
 Filter ID: —
 Instrument #: PQ200-1392
 Install Date: Nov 6/2023
 Last Calibration Date: Nov 6/2023

Sample date and times:

Date: —
 Start: —
 Stop: —

Calibration

Date: Nov 6/2023
 Time: 16:00

Temperature: 45°F
 Pressure: 29.9 in. Hg } From Weather App

Leak Checks (pass or fail)

External ✓
 Internal ✓

*Internal leak check only required if external fails

if leak checks fail, inspect filter cassette and internal o-rings and in down tube

Flow verification

point	Flow setting (lpm)	Delta Cal reading (lpm) *	Temperature (°C) **		Pressure (mm Hg) **	
			PQ200	Delta Cal	PQ200	Delta Cal
1	15	15.01	2.9	3.0	763	763
2	18.4	18.41	2.9	3.0	763	763
3	16.7	16.68	2.9	3.0	763	763

* if flow varies from delta cal adjust using arrow buttons

** temp shouldn't vary more than $\pm 2^\circ\text{C}$ and pressure more than $\pm 10 \text{ mm Hg}$, if either vary more then calibration is required

Notes:

Leak test: 106 cm (internal = 107 cm) - Passed (internal/external)

Temperature is within $\pm 2^\circ\text{C}$ (no need to adjust)

Pressure is within $\pm 10 \text{ mm Hg}$ (no need to adjust)

APPENDIX C

Wind Rose Plots

PROJECT NUJIO'QONIK: BASELINE AMBIENT AIR QUALITY MONITORING STUDY

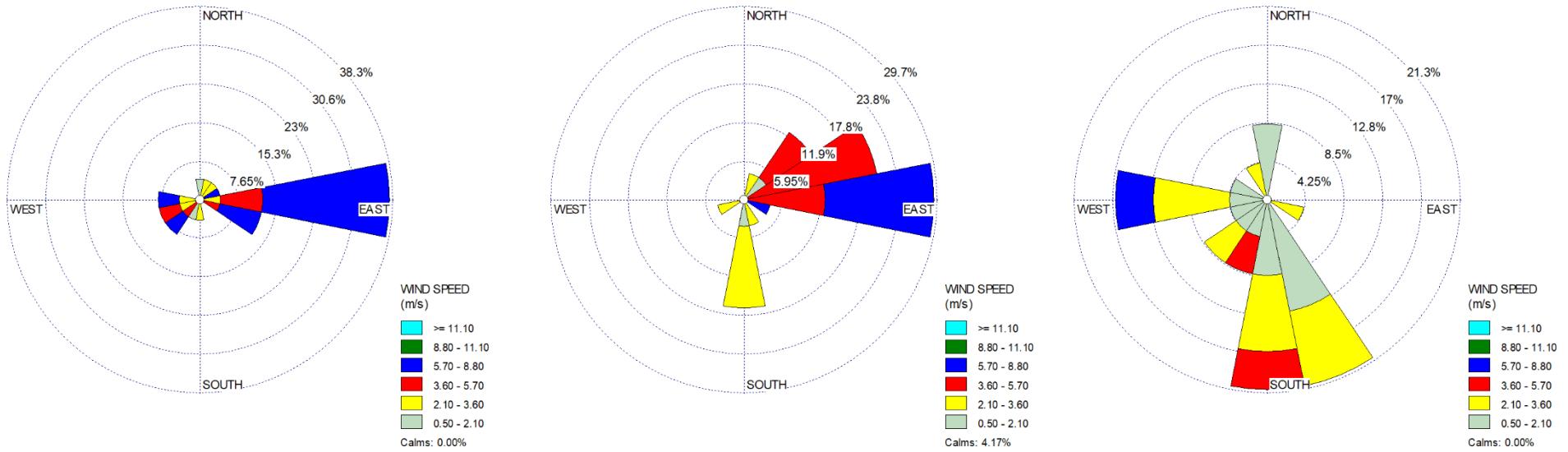


Figure C 1 Wind Roses for June Monitoring Events – Stephenville Airport

PROJECT NUJIO'QONIK: BASELINE AMBIENT AIR QUALITY MONITORING STUDY

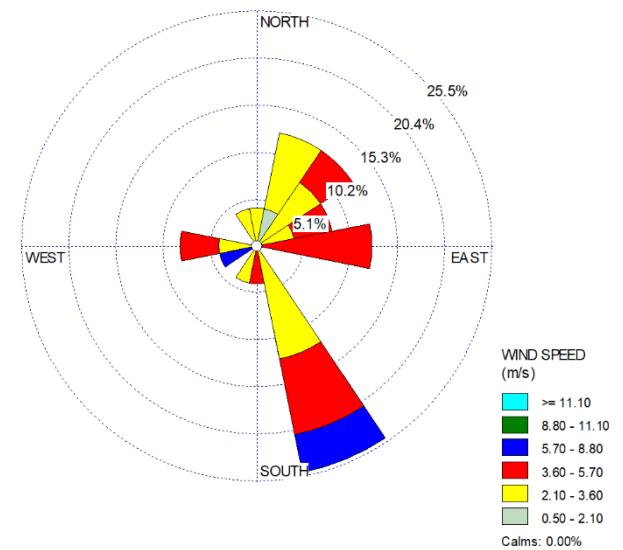
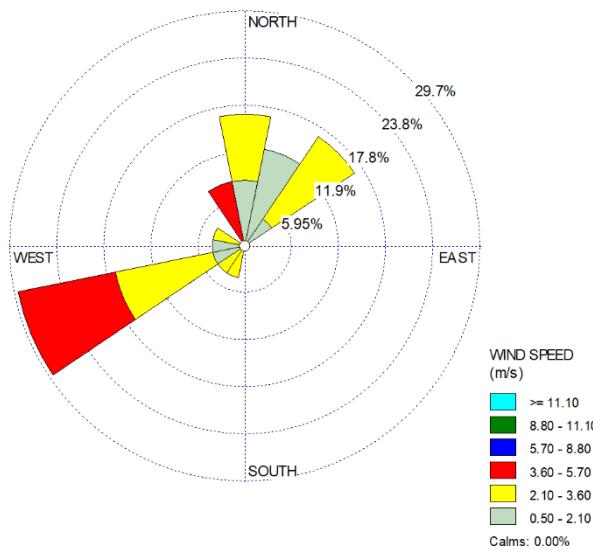
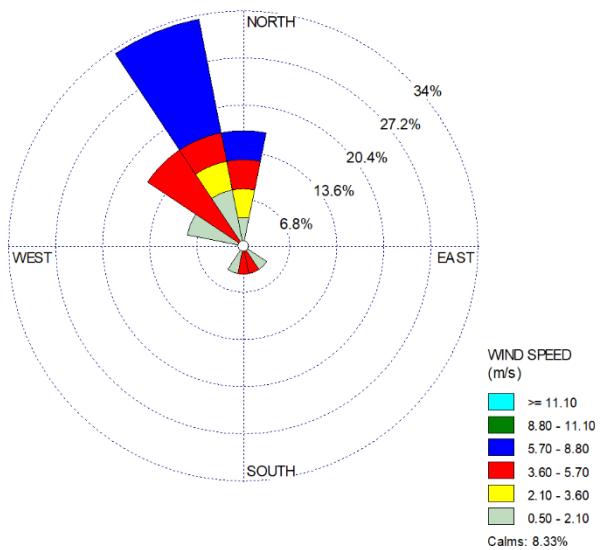




Figure C 2 Wind Roses for August Monitoring Events – Stephenville Airport

PROJECT NUJIO'QONIK: BASELINE AMBIENT AIR QUALITY MONITORING STUDY

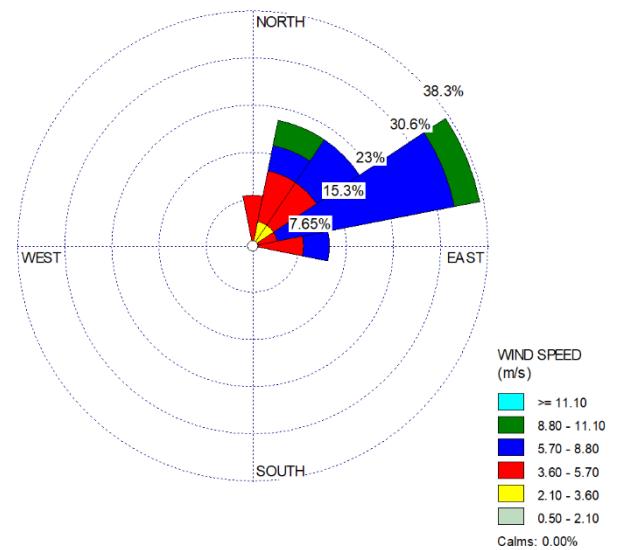
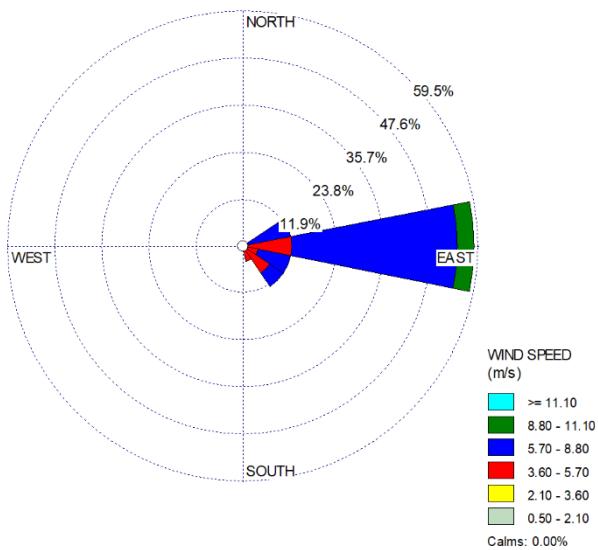
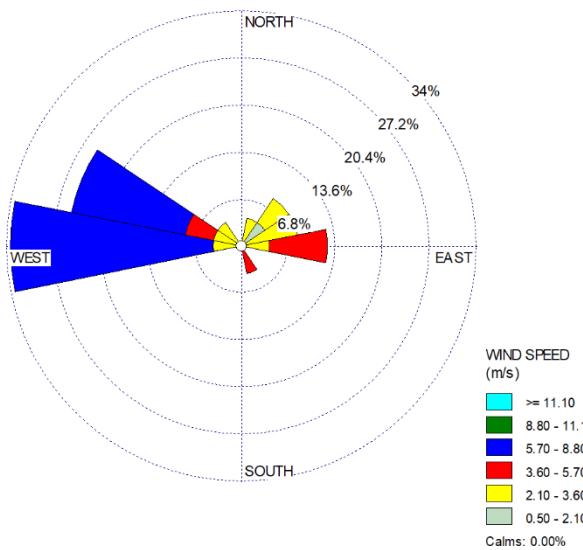




Figure C 3 Wind Roses for November Monitoring Events – Stephenville Airport

PROJECT NUJIO'QONIK: BASELINE AMBIENT AIR QUALITY MONITORING STUDY

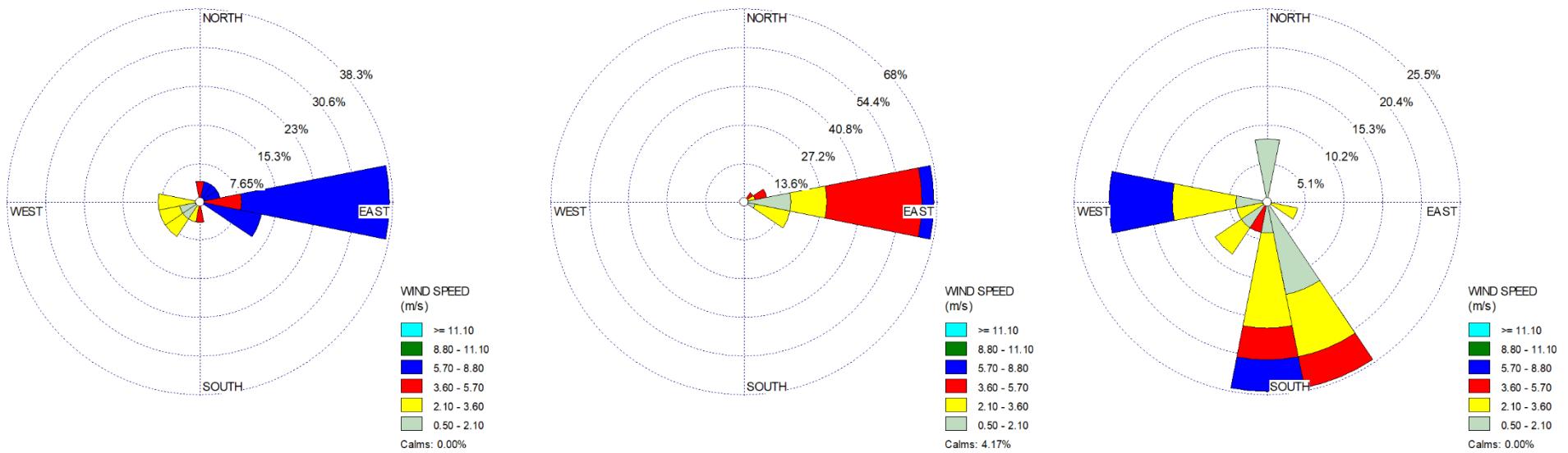


Figure C 4 Wind Roses for June Monitoring Events – West Bay

PROJECT NUJIO'QONIK: BASELINE AMBIENT AIR QUALITY MONITORING STUDY

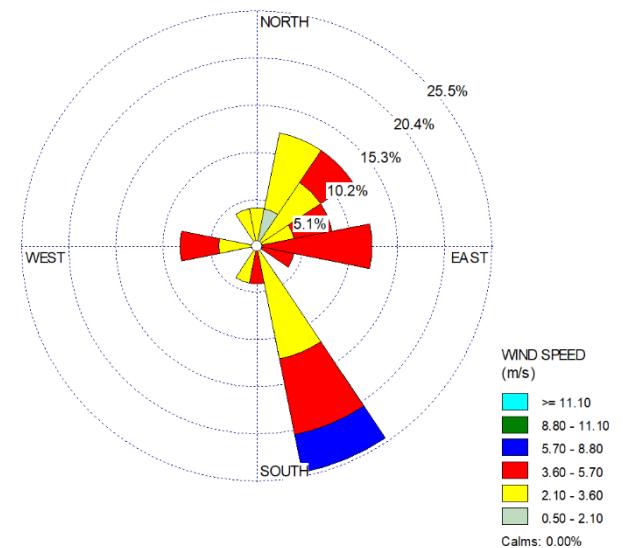
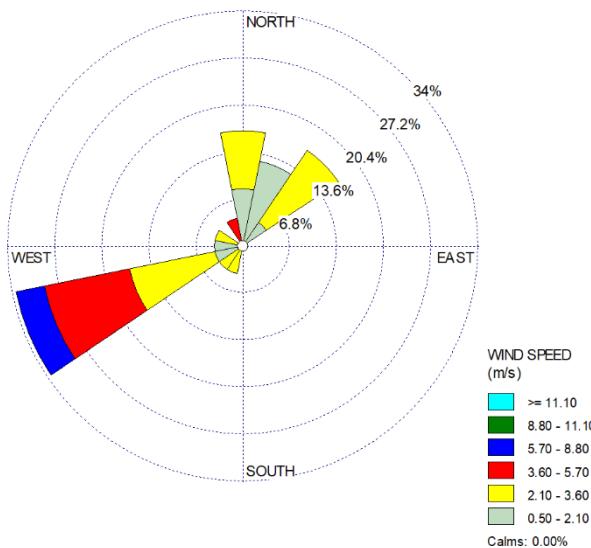
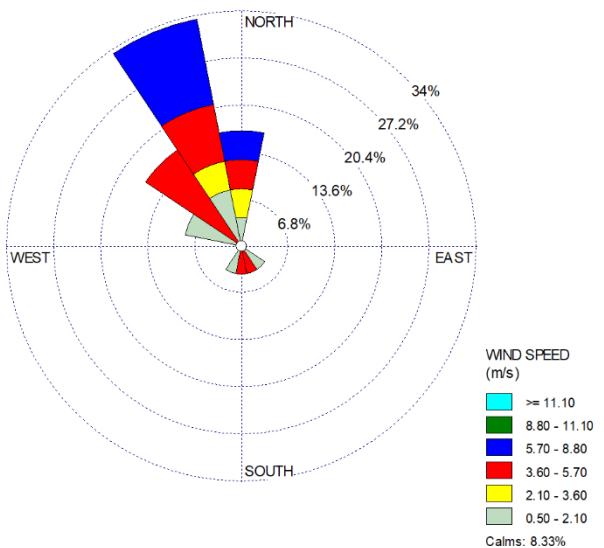




Figure C 5 Wind Roses for August Monitoring Events – West Bay

PROJECT NUJIO'QONIK: BASELINE AMBIENT AIR QUALITY MONITORING STUDY

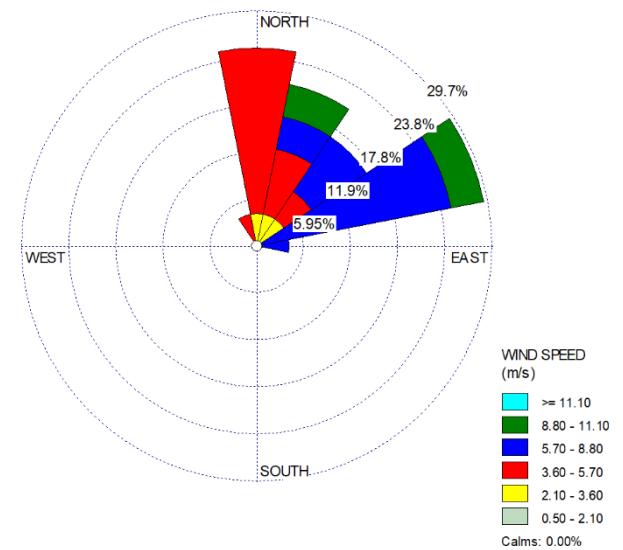
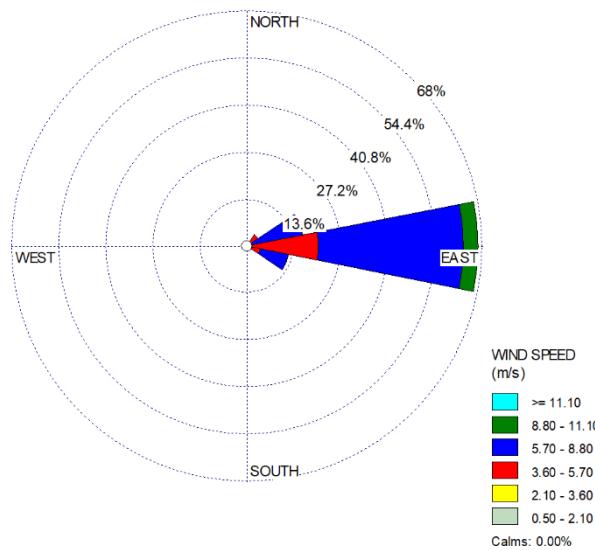
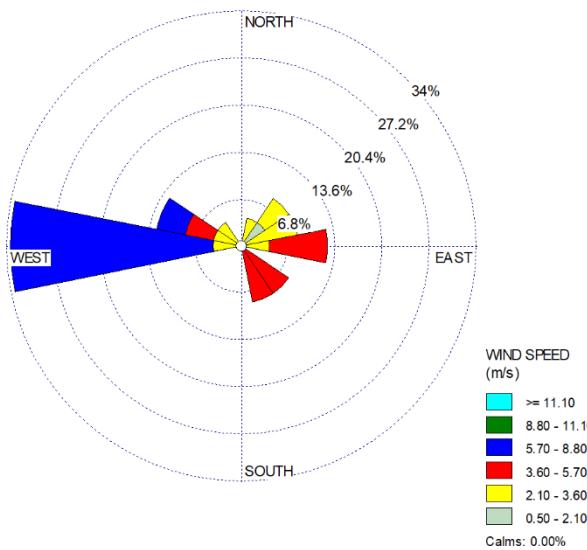




Figure C 6 Wind Roses for November Monitoring Events – West Bay

APPENDIX D

Site Location Photos

PROJECT NUJIO'QONIK: BASELINE AMBIENT AIR QUALITY MONITORING STUDY

Photo 1 August Monitoring Setup at the Stephenville Airport

PROJECT NUJIO'QONIK: BASELINE AMBIENT AIR QUALITY MONITORING STUDY

Photo 2 November Monitoring Setup at the Stephenville Airport

Appendix 2-F

Species at Risk Impacts Mitigation and Monitoring Plan TOC

Project Nujio'qonik: Amendment to the Environmental Impact Statement

Draft Annotated Table of Contents for Species at Risk Impacts Mitigation and Monitoring Plan (SAR IMMP)

1 Project Title

Title: Project Nujio'qonik - Species at Risk Impacts Management and Monitoring Plan (SAR IMPP)

The purpose of this SAR IMMP is to meet requirements for the issuance of a Section 19 permit under the *Newfoundland and Labrador Endangered Species Act*.

Note that separate SAR IMMPs and associated permit applications may be filed for specific phases and geographic locations of Project activities (e.g., construction and operation, Port au Port, Codroy, and Stephenville). However, the final SAR IMMP's geographic and temporal scope will be determined in close consultation with the NL Department of Fisheries, Forestry and Agriculture (NL DFFA-Wildlife Division).

2 Project Description and Study Area

A description of the Project is provided, including the components of the Project that could have adverse effects on the identified species at risk (SAR), both directly and indirectly. The Project description will include a schedule of activities, construction and operation methods, and proposed phasing or other timelines for Project activities that may affect the identified SAR. This will be drafted using information in the EIS, which will be updated with the ongoing engineering / design work that has been completed since submission of the EIS.

This section will define the geographic and temporal scope for the SAR IMMP (i.e., Port au Port, Codroy, and / or Stephenville; construction, operation, and decommissioning phases).

2.1 Project Schedule

A detailed, up to date schedule for Project activities / phases for each geographic location included in the scope of this SAR IMMP.

2.2 Site Preparation and Construction Activities

A detailed, up to date description of site preparation and construction activities for each geographic location included in the scope of this SAR IMMP. Information will be provided as available. For example, Port au Port plans are far more advanced than Codroy.

2.3 Operation Activities

A detailed, up to date description of operation activities for each geographic location included in the scope of this SAR IMMP. This will be drafted using information in the EIS and will be updated with the ongoing engineering / design work that has been completed since submission of the EIS and new information gathered during the construction phase monitoring.

Note that if NLDFFA-Wildlife Division agrees to a site preparation / construction only SAR IMMP, this section may not be required at this time.

2.4 Decommissioning and Rehabilitation Activities

A description of decommissioning and rehabilitation activities for each geographic location included in the scope of this SAR IMMP. Subject to confirmation by NLDFFA-Wildlife Division, this may be drafted using information in the EIS, with commitments to follow-up / update closer to the time of decommissioning (e.g., rehabilitation of temporary roads, construction or laydown areas) and informed by monitoring results.

Note that if NLDFFA-Wildlife Division agrees to a site preparation / construction only SAR IMMP, this section may be restricted to rehabilitation of temporary construction or laydown areas.

2.5 Study Area and Mapping

This section will identify and delineate (in map form and digital GIS shapefile formats) the study area within which direct and indirect impacts or potential impacts to the identified SAR have been assessed.

Based on past SAR IMMPs, the following mapping may be required:

- Detailed maps showing planned and potential turbine locations, planned and potential road and trail locations, and transmission and substation infrastructure locations. Maps should include a legend, scale bar, and indicate specific road and trail width and intended vehicle capacity (i.e., size of vehicles and traffic levels). Detailed maps should be consistent with road and work activity (e.g., locations, alignments, design, and capacity) that are detailed in engineering drawings. Drawings, graphics, maps, figures, and tables should be dated to the month of submission.
- Linear length (km) and area(km^2) of roads, access trails, and transmission lines.
- Total area of turbines and associated clearing.
- Estimated area calculations for Project-associated zones of influence.
- Anticipated construction / operation periods for each of the major Project components.
- Detailed maps showing the proposed location of Project infrastructure and the proposed location of associated access / servicing roads or other servicing / construction activities.

3 Species Group 1

The following subsections will be populated for each species group included in the SAR IMMP (e.g., rare plants, bats, caribou, marten, fish). The species groups included will be determined in consultation with NLDFFA-Wildlife Division.

There may be further need to use sub-sections if the three geographic areas of the Project (i.e., Port au Port, Codroy, and Stephenville) are required to be included in this SAR IMMP.

3.1 Habitat Uses and Preferences

This section will describe the SAR addressed in the SAR IMMP including their general habitat preferences, mapping of known occurrences, and discussion of potential distribution based on the land cover classification (LCC), which is complete for the Port aux Port Wind Farm and included in the EIS Amendment.

3.2 Cumulative Effects

A description of how the components of the Project impacting or potentially impacting the identified SAR were assessed for their combined potential contributions to incremental and / or cumulative landscape change and / or disturbance in conjunction with other existing and potential (future) land use activities (e.g., forest operating plans, mineral leases).

3.3 Consideration of Avoidance and Reasonable Activity Alternatives

Identification of what measures have been taken to avoid adverse impacts on SAR. Identify which Project alternative(s) were considered. Highlight the advantages and disadvantages of the preferred alternative(s) in relation to its effects or potential effects on the identified SAR, as well as the necessity and effectiveness of meeting the main purpose of the activity.

3.3.1 CONSIDERATION OF AVOIDANCE

Description of Project layout refinements as well as the micro-siting process that will be followed during final siting of turbines and other Project components.

3.3.2 REASONABLE ALTERNATIVES

Description of reasonable alternatives related to specific Project components, such as other energy supplies, turbine types and sizes, locations land area requirements, access routes, and water sources, and why the preferred option was chosen. This will be based on information in the EIS and will be updated where appropriate with information from subsequent detailed engineering design.

3.4 Mitigation and Monitoring Strategies

Where adverse impacts cannot be avoided, this section will identify specific and detailed monitoring actions and measures proposed to document residual adverse effects of Project activities on the identified SAR, as well as the effectiveness of proposed mitigations in reducing these effects. This includes the proposed mitigation, methods and schedule for implementation (including appropriate mapping and description of surveys that may be required prior to implementation), monitoring of mitigation, defining success criteria (i.e., thresholds), adaptive management approaches (i.e., additional mitigation measures pending monitoring results), reporting schedule, and structure.

3.4.1 MITIGATION AND MONITORING TIER 1

Standard mitigation measures with associated monitoring approaches with thresholds to direct future responses and actions through the application of adaptive management approaches.

3.4.2 MITIGATION AND MONITORING TIER 2

Non-standard mitigation measures with associated monitoring approaches with thresholds to direct future responses and actions through the application of adaptive management approaches.

4 Species Group 2

This section will include the same sub-sections as in Section 3.

5 Species Group 3

This section will include the same sub-sections as in Section 3.

6 Avian Species at Risk

A concise and high-level summary of the Avifauna Impacts Mitigation and Monitoring Program will be provided.

7 References

Bibliography of references used throughout the text.

Appendix 2-G

Groundwater Monitoring Plan TOC

Project Nujio'qonik: Amendment to the Environmental Impact Statement

Draft Annotated Table of Contents for Groundwater Monitoring Plan (GWMP)

1 Introduction

A broad overview of the project, introducing readers to the Project and giving pertinent background information relevant to the GWMP.

1.1 Project Overview

Description of project activities, areas, and schedule.

1.2 Goals and Objectives

1.2.1 PURPOSE

The purpose of the GWMP is to:

- Identify the regulatory requirements and standards relevant to groundwater
- Identify and describe the existing conditions for groundwater
- Describe the management and mitigation measures that will be used to reduce the potential effects on groundwater from Project construction and operation
- Describe the groundwater monitoring that will be conducted during Project construction and operation to meet regulatory requirements

1.2.2 OBJECTIVES

State the primary objective of the monitoring plan, such as "...to provide a framework for monitoring potential changes in groundwater quantity and quality in relation to the Project."

1.3 Regulatory Setting

Identify the regulatory requirements and standards relevant to groundwater. This may include references to discussions and communications held with regulators.

1.3.1 FEDERAL REGULATORY REQUIREMENTS

Identify applicable federal regulatory requirements and guidelines, such as the Guidelines for Canadian Drinking Water Quality.

1.3.2 PROVINCIAL REGULATORY REQUIREMENTS

Identify provincial regulations and legislation, such as the *NL Environmental Protection Act* and *Water Resources Act*.

2 Baseline Information

Summary of the existing conditions section of the EIS.

3 Proposed Mitigation and Management Measures

Key measures to mitigate the potential effects of the Project on groundwater resources identified during the EA process.

4 Monitoring Program

4.1 Measurable Parameters and Thresholds

4.1.1 GROUNDWATER QUANTITY

Identification of parameters relevant to groundwater quantity. This will include water levels and/or flow rates that may have residual environmental effects or may be identified as locations of interest by the regulators.

4.1.2 GROUNDWATER QUALITY

Identification of parameters relevant to groundwater quality. This will focus on parameters that may have residual environmental effects or may be identified as particular parameters of interest by the regulators.

4.1.3 THRESHOLDS

Identification of critical thresholds relevant to groundwater quantity and quality. This will quantify benchmarks for measurable values of groundwater quantity and quality that will trigger adaptive management.

4.2 Monitoring Locations

Maps and descriptions of monitoring well locations. Tables listing monitoring well types, locations, parameters, schedules, etc. May include sections for any existing monitoring wells (e.g., plant site or Stephenville wellfield), recommendations for installation of additional monitoring wells, and a section that summarizes the combined monitoring network (i.e., existing + proposed).

4.3 Methods

4.3.1 FREQUENCY

A proposal of initial water quality sampling/water level monitoring frequency for each monitoring location.

4.3.2 DRILLING METHODS

Recommended drilling methods and discussion of paired/nested monitoring wells, if required and field conditions to be recorded.

4.3.3 MONITORING WELL CONSTRUCTION

Includes monitoring well construction requirements, including screen specifications, sand pack, annular seal, grout, etc.

4.3.4 WELL DEVELOPMENT, TESTING, AND MONITORING EQUIPMENT DEPLOYMENT

Includes standard methodology for properly preparing a monitoring well for sampling/data recording.

4.3.5 MONITORING WELL SAMPLING

Includes groundwater sampling methodology, including water level measurements, purging requirements, materials requirements (e.g., dedicated tubing, pumps, etc.), shipping requirements for samples, etc.

5 Reporting

Description of the scope and schedule of reporting, such as the preparation of an Annual Report submitted to the Government of Newfoundland and Labrador Department of Environment and Climate Change (NLDECC) or groundwater exceedances, if applicable, reported to NLDECC upon occurrence. This section will include conditions that define the termination of monitoring (e.g., trend analysis, stable concentrations/water levels for a specified period).

6 Related Documents

Other related monitoring plans occurring concurrently with this one and how they relate (i.e., environmental protection plan or surface water monitoring plan).

7 References

Bibliography of references used throughout the text.

Appendix 2-H

Surface Water Monitoring Plan TOC

Project Nujio'qonik: Amendment to the Environmental Impact Statement

Draft Annotated Table of Contents for Surface Water Monitoring Plan (SWMP)

1 Introduction

A broad overview of the project, introducing readers to the Project and giving pertinent background information relevant to the Surface Water Monitoring Plan (SWMP).

1.1 Project Overview

Description of project activities, areas, and schedule.

1.2 Goals and Objectives

1.2.1 PURPOSE

The purpose of the SWMP is to:

- Provide monitoring-based traceability to confirm predictions made in the Environmental Impact Statement (Stantec 2023)
- Confirm compliance with regulatory requirements
- Demonstrate execution of monitoring-based commitments
- Identify the regulatory requirements and standards relevant to surface water
- Provide reference stations to link the existing conditions for surface water
- Describe the management and mitigation measures that will be used to reduce the potential effects on surface water from Project construction and operation
- Describe the surface water monitoring that will be conducted during Project construction and operation to meet regulatory requirements

1.2.2 OBJECTIVES

The objectives of the SWMP include: supporting predictions of potential effects of the Project on surface water, confirmation of compliance with regulatory requirements, identification of changes in drainage patterns, surface water flow and quality, and determination of additional mitigation or response measures, if required.

1.3 Regulatory Setting

Identify the regulatory requirements standards, and EIS and permitting conditions relevant to surface water. This may include references to discussions and communications held with regulators.

1.3.1 FEDERAL REGULATORY REQUIREMENTS

Identify relevant federal regulatory requirements and guidelines.

1.3.2 PROVINCIAL REGULATORY REQUIREMENTS

Identifying provincial regulations and legislation such as the *NL Environmental Protection Act*, *Water Resources Act* and effluent / water quality guidelines (e.g., Canadian Council of Ministers of the Environment, (CCME) Canadian Water Quality Guidelines for the Protection of Aquatic Life), etc.

2 Baseline Information

2.1 Hydrology

Description of the network of watersheds and bodies of water, and the hydrologic regime in the Project areas. Also, a description of the physiography that influences the hydrologic processes and dictates geomorphological processes. Description and hydrologic interpretation of surface water quantity data from the hydrologic regional analysis conducted for the EIS.

2.2 Surface Water Quality

Description of surface water quality presented in the EIS including information gathered from public sources and collected by the proponent.

3 Proposed Mitigation and Management Measures

Key measures to mitigate the potential effects of the Project on surface water resources identified during the EIS review process.

4 Monitoring Program

Introduction of the SWMP. The program will have three phases: pre-construction, construction and operations. Each phase will incorporate an adaptive management strategy used to inform the next phase of the program.

4.1 Measurable Parameters and Thresholds

Identification of critical thresholds relevant to surface water quality and quantity. This will focus on thresholds for parameters that may have residual environmental effects or may be identified as particular parameters of interest by the regulators.

4.1.1 SURFACE WATER QUALITY

Surface water quality parameters and their respective thresholds for relevant guidelines and potential effluent criteria. Each parameter will have a pre-defined threshold or thresholds where a parameter may have an effluent criteria limit and CCME CEQG for the Protection of Aquatic Life guideline (Marine or Freshwater) used to define the edge of an effluent mixing zone.

4.1.2 SURFACE WATER QUANTITY

Monitoring flows at select watercourses for comparison against predicted reductions (indirect loss) of fish habitat in watercourses in the EIS. This will involve hydrometric and geomorphic monitoring for the watersheds with the highest infrastructure density.

Thresholds of 30% and 50% of the mean annual flow (MAF), as determined by the hydrologic regional regression analysis conducted for the EIS, will be used for reference; however, threshold determination can vary depending on the regulator.

4.2 Monitoring Locations

Maps and descriptions of monitoring locations. Tables listing station types, locations, parameters, schedules, etc.

4.3 Pre-Construction Monitoring

Description of continued baseline monitoring prior to the start of construction to enhance understanding of local conditions for watercourses and receiving water bodies. Installation of hydrometric monitoring.

4.3.1 METHODS

4.3.1.1 Surface Water Quality

A description of the in-situ collection of water quality samples, including reference to frequency and parameter packages, as well as processes for Quality Assurance / Quality Control (QA / QC) and laboratory procedures.

4.3.1.2 Surface Water Quantity

A description of flow monitoring techniques and methods, and monitoring frequency and relevant QA / QC. This section will reference appropriate hydrometric monitoring standards such as those used by the Water Survey of Canada.

4.4 Construction Monitoring

Description of surface water monitoring during the construction phase and expected Project interactions.

4.4.1 ADAPTIVE MANAGEMENT

Implement construction surface water adaptive management to verify that:

- Monitoring results track as expected / predicted and are relevant to construction phasing
- SWMP is capable of detecting and identifying unforeseen effects
- SWMP has a process established to investigate the source of the effect and, if necessary, implement additional mitigative measures to respond to the identified effect

4.5 Operation Monitoring

A description of proposed changes to operation monitoring locations and frequency from construction with the stabilization of areas around wind turbines. As part of operations, discharge effluent volumes from the hydrogen / ammonia plant will be recorded daily. Installation of flow monitoring equipment at the outlet of the hydrogen/ ammonia plant to monitor effluent flows from the plant. The discharge effluent monitoring location and sampling frequency from the hydrogen / ammonia plant will be described.

4.5.1 ADAPTIVE MANAGEMENT

Implement construction surface water adaptive management to verify that:

- Monitoring results track as expected / predicted and are relevant to construction phasing
- SWMP is capable of confirming compliance with regulatory requirements
- SWMP is capable of detecting and identifying unforeseen effects
- SWMP has a process established to investigate the source of the effect and, if necessary, implement additional mitigative measures to respond to the identified effect

5 Reporting

Description of the magnitude and schedule of reporting, such as Annual Surface Water Quality and Quantity Report submitted to the Newfoundland and Labrador Department of Environment and Climate Change (NLDECC) or Water Quality Exceedances reported to NLDECC upon occurrence. This will include a summary table of all proposed reporting efforts.

5.1 Monitoring Program Changes

Document adaptive management based on findings during each reporting phase.

6 Related Documents

Other related monitoring plans occurring concurrently with this plan and how they relate, i.e. environmental protection plan or groundwater monitoring plan.

7 References

Bibliography of references used throughout the text.

Appendix 2-I

Avifauna Impacts Mitigation and Monitoring Plan TOC

Project Nujio'qonik: Amendment to the Environmental Impact Statement

Draft Annotated Table of Contents for Avifauna Impacts Mitigation and Monitoring Plan (AIMMP)

Project Title: Project Nujio'qonik – Avifauna Impacts Mitigation and Monitoring Plan (AIMMP)

1 Introduction

General background on the Project and requirements for the AIMMP and introduction to the key issues

Overview of consultation process with the provincial Department of Fisheries, Forestry and Agriculture (FFA) and Environment and Climate Change Canada's Canadian Wildlife Service (ECCC-CWS).

2 Objectives

Objectives of the AIMMP including verification of predictions made in the Environmental Impact Statement (EIS) as well as determining the efficacy of mitigation measures designed to minimize project effects on avifauna.

3 Overview of Avifauna

Overview of avifauna in the Regional Assessment Area include summary of SAR. This section will include map(s) depicting key bird areas relative to Project Area, LAA, RSA. There may be further need to use sub-sections if the three geographic areas of the Project (i.e., Port au Port, Codroy, and Stephenville) are required to be included in this AIMMP.

4 Project Description and Study Area

A description of the Project, including the components of the Project that could have negative effects on avifauna, both directly and indirectly. The Project description will include a schedule of activities, overview construction and operation activities, and proposed phasing or other timelines for Project activities that may affect avifauna. This will be prepared using information in the EIS, which will be updated with the ongoing engineering / design work that has been completed since submission of the EIS.

This section will define the geographic and temporal scope for the AIMMP.

4.1 Project Schedule

A schedule for Project activities / phases for each Project Area included in the scope of this AIMMP.

4.2 Construction Activities

An overview of site preparation and construction activities for each Project Area included in the scope of this AIMMP.

4.3 Operation Activities

An overview of operation activities for each Project Area included in the scope of this AIMMP.

4.4 Decommissioning and Rehabilitation Activities

A description of decommissioning and rehabilitation activities for each Project Area included in the scope of this AIMMP. This will be prepared using information in the EIS, with commitments to follow-up / update closer to the time of decommissioning (rehabilitation of temporary roads, construction or laydown areas will need to be included) and based upon monitoring results.

4.5 Study Area and Mapping

Identification and delineation (via mapping) of the study area within which direct and indirect impacts for avifauna have been assessed in the EIS.

The following mapping may be required:

- *Detailed maps showing planned and potential turbine locations, planned and potential road and trail locations, and transmission and substation infrastructure locations.*
- *Linear length in km² of roads, access trails, and transmission lines.*
- *Total area of turbines and associated clearing.*
- *Estimated area calculations for project-associated zones of influence.*
- *Anticipated construction / operation periods for each of the major Project components.*

5 Monitoring Design and Methodology

Overview of general monitoring design and methodology for the AIMMP including how ECCC-CWS' "Wind Turbines and Birds: A Guidance Document for Environmental Assessment" (EC 2007a), "Recommended Protocols for Monitoring Impacts of Wind Turbines on Birds" (EC 2007b), and "Environment and Climate Change Canada's Canadian Wildlife Service (Atlantic Region) - Wind Energy & Birds Environmental Assessment Guidance Update" (Environment Canada, April 2022) were incorporated into the AIMMP.

Will include description of how consultations with FFA and ECCC-CWS were incorporated into the AIMMP.

5.1 Frequency, Duration and Geographic Extent of Monitoring

Summary (tabular format) of the frequency, duration, and geographic extent of avifauna monitoring.

6 Waterbirds

The following subsections will be populated for each of the seven avifauna groups assessed in the EIS. This approach is subject to change based on consultation with FFA and ECCC-CWS. There may be further need to use sub-sections if the three geographic areas of the Project (i.e., Port au Port, Codroy, and Stephenville) are required to be included in this AIMMP.

6.1 Habitat Uses and Key Areas

This section will include description of avifauna group general habitat preferences, mapping of known occurrences with emphasis on key areas, and discussion of potential distribution based on habitat classification.

6.2 Cumulative Effects

A description of how the components of the Project affecting or potentially affecting avifauna group were assessed for their combined potential contributions to incremental and or cumulative landscape change and / or disturbance in conjunction with other existing and potential (future) land use activities (e.g., forest operating plans, mineral leases).

6.3 Consideration of Avoidance and Reasonable Activity Alternatives

Identification of what measures have been taken to avoid adverse impacts on avifauna group. Identify which project alternative(s) were considered. Highlight the advantages and disadvantages of the preferred alternative(s) in relation to its effects or potential effects on avifauna group, as well as the necessity and effectiveness of meeting the main purpose of the activity.

6.3.1 CONSIDERATION OF AVOIDANCE

Description of Project layout refinements as well as the micro-siting process that will be followed during final siting of turbines and other Project components.

6.3.2 REASONABLE ALTERNATIVES

Description of reasonable alternatives related to specific Project components, such turbine types and sizes, locations land area requirements, access routes, and water sources, and why the preferred option was chosen. This will be based on information in the EIS and will be updated where appropriate with information from subsequent detailed engineering design.

6.4 Mitigation and Monitoring Strategies

Where negative effects cannot be avoided, this section will identify specific and detailed monitoring actions and measures proposed to document residual adverse effects of Project activities on avifauna group, as well as the effectiveness of proposed mitigations in reducing these effects. This includes the proposed mitigation, methods and schedule for implementation (including appropriate mapping and description of surveys that may be required prior to implementation), monitoring of mitigation, defining success criteria (i.e., thresholds), adaptive management approaches (i.e., additional mitigation measures pending monitoring results), reporting schedule, and structure.

6.4.1 MITIGATION AND MONITORING TIER 1

Standard mitigation measures with associated monitoring approaches with thresholds to direct future responses and actions through the application of adaptive management approaches.

6.4.2 MITIGATION AND MONITORING TIER 2

Non-standard mitigation measures with associated monitoring approaches with thresholds to direct future responses and actions through the application of adaptive management approaches.

7 Shorebirds

This section will include the same sub-sections and general content as in Section 6.

8 Waterfowl

This section will include the same sub-sections and general content as in Section 6.

9 Raptors

This section will include the same sub-sections and general content as in Section 6.

10 Landbirds

This section will include the same sub-sections and general content as in Section 6.

11 Upland Gamebirds

This section will include the same sub-sections and general content as in Section 6.

12 Species at Risk

This section will include the same sub-sections and general content as in Section 6. It will be linked to the SARIMMP.

13 Reporting

Description of reporting procedures as required by regulators.

14 Communication Plan

Description of communications plan to describe the results of AIMMP to interested parties as per EIS Guidelines.

15 References

Bibliography of references used throughout the text.

Appendix 2-J

Outfitters Effects Monitoring Plan TOC

Project Nujio'qonik: Amendment to the Environmental Impact Statement

Draft Annotated Table of Contents for Outfitter Environmental Effects Monitoring Plan (OEEMP)

Project Title: Project Nujio'qonik – Outfitter Environmental Effects Monitoring Plan (OEEMP)

1 Introduction

General background on the Project and requirements for the OEEMP and introduction to the key issues

Overview of engagement process with the Newfoundland and Labrador Outfitters Association (NLOA) including development of OEEMP in collaboration with NLOA.

2 Objectives

Objectives of the OEEMP including (but not limited to) establishing a program to monitor the efficacy of measures to mitigate potential negative effects of the Project on outfitters' land and resource use and associated economic conditions.

Key Performance Indicators will be used to monitor whether mitigation objectives are being met.

3 Definitions

Provision of clear definitions used in the EIS and relevant to the OEEMP including but not limited to Local Assessment Area, Regional Assessment Area.

4 Project Description and Study Area

A description of the Project, including the components of the Project that could have negative effects on outfitters, both directly and indirectly. The Project description will include a schedule of activities, overview construction and operation activities, and proposed phasing or other timelines for Project activities that may affect outfitters. This will be prepared using information in the EIS, which will be updated with the ongoing engineering / design work that has been completed since submission of the EIS.

This section will define the geographic and temporal scope for the OEMMP.

4.1 Project Schedule

A schedule for Project activities / phases for each Project Area included in the scope of this OEMMP.

4.2 Construction Activities

An overview of site preparation and construction activities for each Project Area included in the scope of this OEMMP.

4.3 Operation Activities

An overview of operation activities for each Project Area included in the scope of this OEMMP.

4.4 Decommissioning and Rehabilitation Activities

A description of decommissioning and rehabilitation activities for each Project Area included in the scope of this OEMMP. This will be prepared using information in the EIS, with commitments to follow-up / update closer to the time of decommissioning (rehabilitation of temporary roads, construction or laydown areas will need to be included) and based upon monitoring results.

5 Outfitting Operations

Overview of outfitters and outfitter companies in NL, RSA, LAA, and Project Area derived from the EIS and follow-up engagement with the NLOA.

6 Potential Residual Project Effects – Outfitters

Overview of EIS determinations for effects of Project activities on outfitters and outfitting activities including determination of significance.

Overview of outfitters concerns.

7 Environmental Effects Management and Monitoring Measures

Overview of WEGH2's overall Environmental Management System.

7.1 Construction Phase – Effects Mitigation

Mitigation strategies in response to potential construction effects on outfitters.

7.2 Operations Phase—Effects Mitigation

Mitigation strategies in response to potential operations effects on outfitters.

7.3 Decommissioning and Rehabilitation—Effects Mitigation

Mitigation strategies in response to potential decommissioning and rehabilitation effects on outfitters.

8 Outfitters Environmental Effects Monitoring Plan

Description of specific effects monitoring components for outfitters to be developed in collaboration with NLOA. Anticipated to include Key Performance Indicators and Response Mechanisms.

9 Engagement

Description of process for ongoing engagement between WEGH2 and NLOA with dissemination of information to NLOA members.

10 Review of OEEMP and Reporting

Description of the review process of the OEEMP which will involve WEGH2 and NLOA and procedures for modifying the OEEMP acknowledging that it is considered a “living” document.

Description of reporting procedures to communicate findings of OEMMP to NLOA and regulatory agencies as appropriate.

11 Compensation

Overview of compensation provisions of the OEMMP.

12 References

Bibliography of references used throughout the text.

Appendix 2-K

Updated Transportation Impact Study and Traffic Management Plan

Project Nujio'qonik: Amendment to the Environmental Impact Statement

**Project Nujio'qonik: Updated
Transportation Impact Study and
Traffic Management Plan**

Final Report

January 29, 2024

Prepared for:

World Energy GH2 LP

Prepared by:

Stantec Consulting Ltd.

File: 121417575

PROJECT NUJIO'QONIK: UPDATED TRANSPORTATION IMPACT STUDY AND TRAFFIC MANAGEMENT PLAN

This document entitled Project Nujio'qonik: Updated Transportation Impact Study and Traffic Management Plan was prepared by Stantec Consulting Ltd. ("Stantec") for the account of World Energy GH2 LP (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by _____
(signature)

Ray Lei, M.Sc., EIT.

Prepared by _____
(signature)

Rodney Blanchard, CTech, CPT

Reviewed by _____
(signature)

Arash Mirhoseini, M.Sc., P.Eng., PMP.

Digitally signed by Flower,
Flower, Peter
Peter
Date: 2024.01.29
15:48:11 -04'00'
Approved by _____
(signature)

Peter Flower, P.Eng.

Table of Contents

1.0	INTRODUCTION.....	1
1.1	PROJECT TRANSPORTATION OVERVIEW AND LOCATION.....	2
1.2	SCOPE OF THE STUDY.....	6
2.0	ROAD INFRASTRUCTURE.....	6
2.1	PORT / BARGING STATIONS	8
2.2	HIGHWAYS.....	8
2.3	BRIDGES AND CULVERTS.....	9
2.4	INTERNAL ROADS.....	10
3.0	TRAFFIC ANALYSIS.....	10
3.1	ANNUAL AVERAGE DAILY TRAFFIC VOLUME.....	11
3.2	TRIP ESTIMATION	13
3.2.1	Turbine Delivery Trips	13
3.2.2	Construction Material Delivery Trips.....	13
3.2.3	Personnels Trips	14
3.2.4	Overall Estimated Future Trips.....	14
3.3	TRAFFIC IMPACT FOR AREA 1	14
3.4	TRAFFIC IMPACT FOR AREA 2	15
3.5	TRAFFIC IMPACT FOR AREA 3	16
3.6	TRAFFIC IMPACT FOR AREA 4	18
4.0	TRANSPORT METHODS	21
4.1	TRANSPORTER VEHICLE DESCRIPTION	21
4.2	SITE ACCESS ROADWAY UPGRADES.....	31
4.3	VERTICAL CLEARANCE ASSESSMENT	31
4.4	HYDRO CONFLICTS	31
4.5	LOAD RATING REQUIREMENTS.....	33
5.0	CONCLUSIONS AND RECOMMENDATIONS	36
6.0	REFERENCES	38

PROJECT NUJIO'QONIK: UPDATED TRANSPORTATION IMPACT STUDY AND TRAFFIC MANAGEMENT PLAN

LIST OF TABLES

Table 2.1	Highway Information	8
Table 2.2	Bridges and Culverts Information	9
Table 3.1	Intersections with AADT Data	11
Table 3.2	Estimated Turbine Delivery Round Trips	13
Table 3.3	Estimated Peak Future Round Trips per Day during Turbine Installation	14
Table 4.1	Preliminary Breakdown of Transport Unit Components Per Wind Turbine	23
Table 4.2	Summary of Swept Path Assessment	30

LIST OF FIGURES

Figure 1.1	Proposed Project Features (All Areas)	3
Figure 1.2	Proposed Project Features (Port au Port Wind Farm)	4
Figure 1.3	Proposed Project Features (Codroy Wind Farm)	5
Figure 2.1	Road Infrastructure	7
Figure 3.1	AADT Locations	12
Figure 3.2	Wind Farm Area 1	15
Figure 3.3	Wind Farm Area 2	16
Figure 3.4	Wind Farm Area 3	17
Figure 3.5	Wind Farm Area 4	19
Figure 3.6	Time Windows of Ferry Traffic between Stephenville and Port aux Basques	20
Figure 4.1	82 m Wind Farm Transporter Vehicle (77 m Blade)	22
Figure 4.2	53 Foot Gooseneck Float Trailer (Imperial Measurements)	22
Figure 4.3	Typical Transporter Vehicle Unit	23
Figure 4.4	Overall Route Plan Illustrating Conflict Locations	24
Figure 4.5	Intersection 1	25
Figure 4.6	Intersection 2	25
Figure 4.7	Intersection 3	26
Figure 4.8	Intersection 4	26
Figure 4.9	Intersection 5	27
Figure 4.10	Intersection 6	27
Figure 4.11	Intersection 7	28
Figure 4.12	Intersection 8	28
Figure 4.13	Intersection 9	29
Figure 4.14	Example of Crossing at an Existing Public Road to WTG Site (Ex. Crossing between Route 463 and Internal Road from the Area 2 Wind Farm Site to the Area 1 Wind Farm Site)	32
Figure 4.15	Example of Trucks Driving under Overhead Wires (Route 490 near Newfoundland T'Railway)	33
Figure 4.16	CL-625 design load and the Newfoundland Special Heavy Truck live load	35
Figure 4.17	HS-20, HS-25 and MS-250 Truck Loadings	35

LIST OF APPENDICES

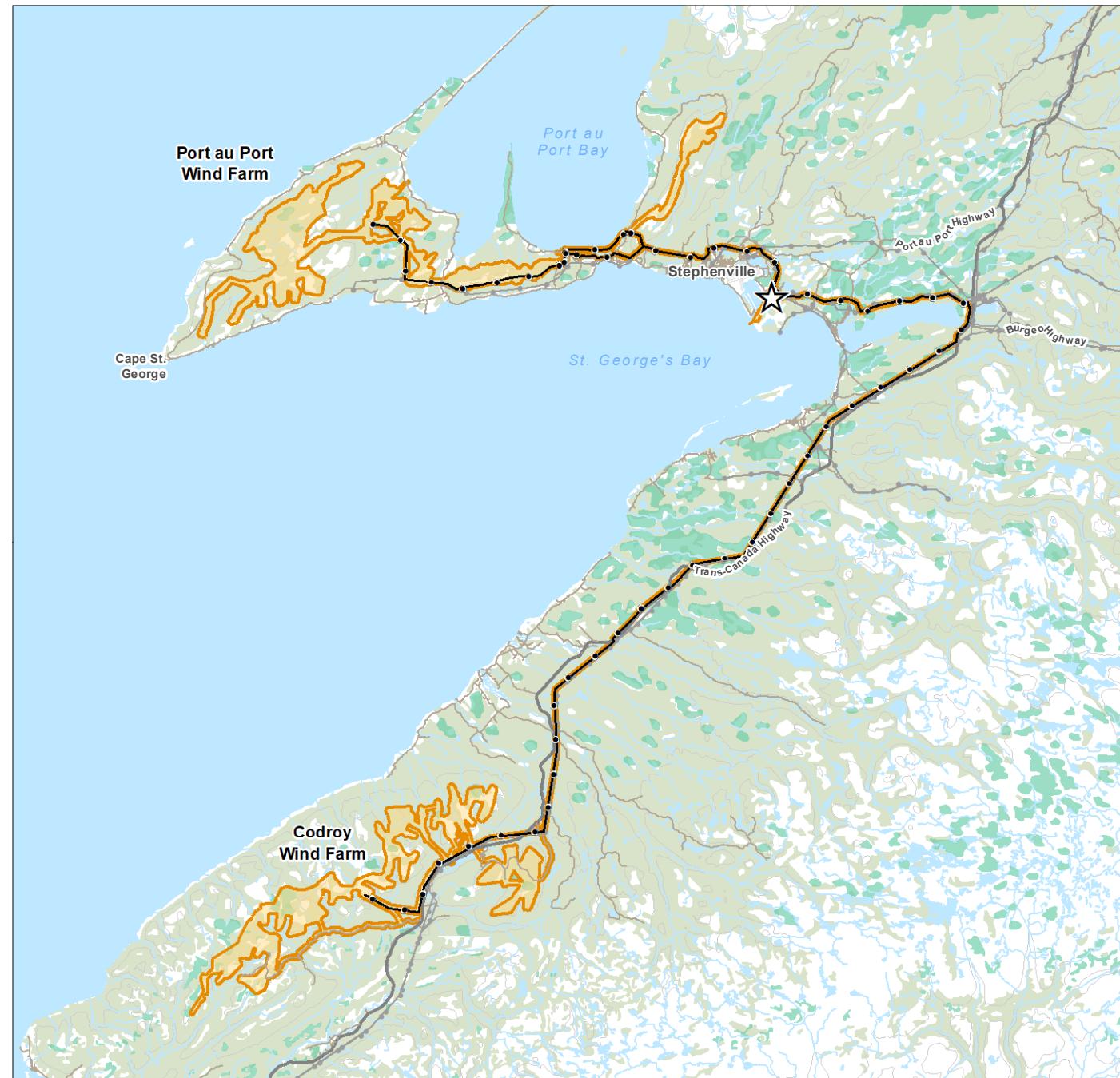
Appendix A	Traffic Data
------------	--------------

1.0 INTRODUCTION

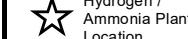
World Energy GH2 (WEGH2) is proposing Project Nujio'qonik (the Project). The Project involves the development, construction, operation and maintenance, and eventual decommissioning and rehabilitation of one of the first Canadian, commercial-scale, “green hydrogen” and ammonia production plants powered by renewable wind energy. Located on the western coast of the island of Newfoundland, Newfoundland and Labrador (NL), the Project will have a maximum production of up to approximately 206,000 tonnes of green hydrogen (equivalent to approximately 1.17 megatonnes (Mt) of ammonia) per year. The hydrogen produced by the Project will be converted into ammonia and exported to international markets by ship. The hydrogen / ammonia plant and associated storage and export facilities will be located at the Port of Stephenville (in the Town of Stephenville, NL) on a privately-owned brownfield site and at an adjacent existing marine terminal, both of which are zoned for industrial purposes.

Renewable energy from two approximately 1,000 megawatt (MW) / 1 gigawatt (GW) onshore wind farms on the western coast of Newfoundland will be used to power the hydrogen and ammonia production processes. These wind farms (referred to herein as the “Port au Port area wind farm” and the “Codroy area wind farm”) will include up to 298 turbines and collectively produce approximately 2,000 MW / 2 GW of renewable electricity. The Port au Port wind farm will include up to 155 wind turbines, with up to 171 sites that are being studied for the EIS, on the Port au Port Peninsula, NL and adjacently on the Newfoundland “mainland” (i.e., northeast of the isthmus at Port au Port). The Codroy wind farm will also consist of up to 143 wind turbines located on Crown land in the Anguille Mountains of the Codroy Valley, NL. The modelling and assessment work is based on preliminary layouts for both wind farm sites (i.e., 171 potential turbine locations at the Port au Port wind farm and 143 potential turbine locations at Codroy wind farm). Final wind farm layouts will be dependent on results of the wind campaign and more detailed field investigations. Once the layout and number of turbines are finalized, the results of models will be reviewed and updated as required.

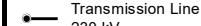
The Project is subject to provincial environmental assessment (EA) requirements under the NL *Environmental Protection Act* and associated *Environmental Assessment Regulations* (EA Regulations). This document is the Transportation Impact Study and Traffic Management Plan, prepared in support of an Environmental Impact Statement (EIS) and required under section 7.2.4 of the EIS Guidelines.


1.1 PROJECT TRANSPORTATION OVERVIEW AND LOCATION

The locations of the Project sites are shown in Figure 1.1 and the locations of turbines are illustrated in Figure 1.2 and Figure 1.3.

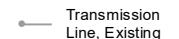

Materials, equipment, and components for construction and commissioning of the Project, will be delivered by ship to the Port of Stephenville and be stored at laydown areas before being distributed to the appropriate construction site. A landing site has also been defined / planned for the Port au Port peninsula to accommodate direct landing of large equipment. This may include specialized heavy equipment, transmission line materials, large wind turbine components, and components for the hydrogen/ammonia plant and ship-loading system. Distribution of components during construction will include:

- Use of existing or upgraded roads at the Port to transport components / materials to the hydrogen/ammonia plant site.
- Use of barges to transport wind farm and transmission line / transformer materials and equipment to the wind farm on the Port au Port Peninsula using the proposed marine landing site.
- Use of the local and private road network to transport wind farm and transmission line / transformer materials and equipment to the portion of the Port au Port Wind Farm located on the east side of Port au Port Bay.
- Use of the local road network and the TransCanada Highway (Route 1) to transport wind farm and transmission line / transformer materials and equipment to the Codroy Wind Farm site.

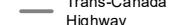


Proposed Project Features

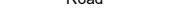
Hydrogen / Ammonia Plant Location



Transmission Line 230 kV

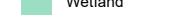


Project Area


Other Features

Transmission Line, Existing

Trans-Canada Highway

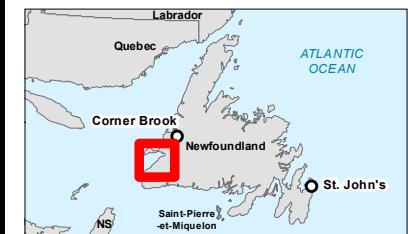

Road

Contour (100 m)

Watercourse

Waterbody

Wetland

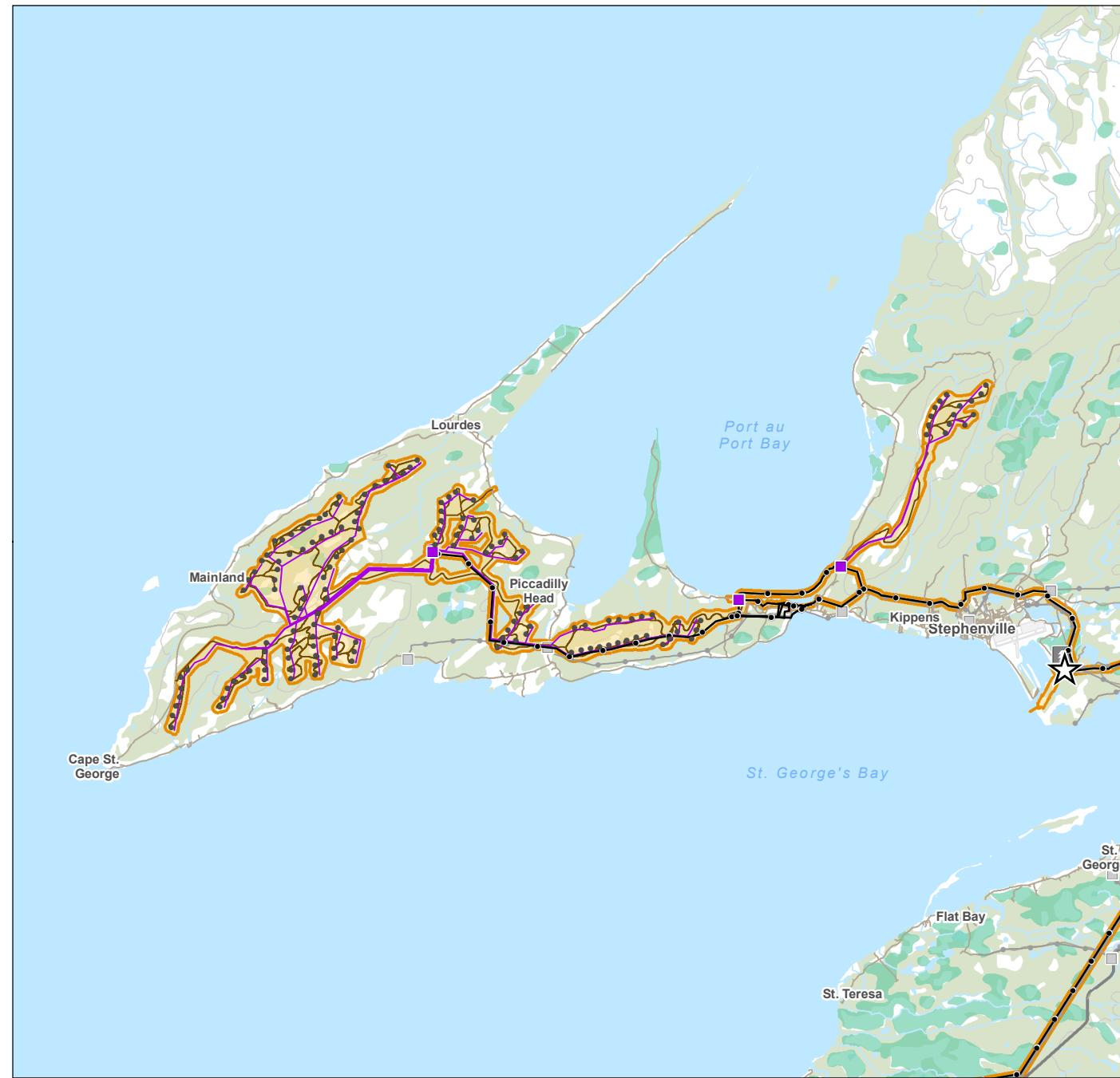

Forested Area

0 10 Kilometres
(At original document size of 8.5x11)
1:550,000

Notes

1. Coordinate System: NAD 1983 CSRS UTM Zone 21N
2. Data Sources: World Energy GH2, NRCan CanVec, OpenStreetMap
3. Background: NRCan CanVec

Project Location
Stephenville
NL


Prepared by XX on 6/23/2023
OR by XX on 20XX-XX-XX

Client/Project
World Energy GH2
Project Nujo'qonik

121417233_000a

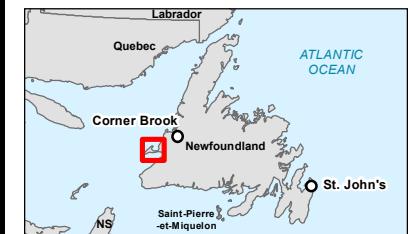
Figure No.
1.1

Proposed Project Features (All Areas)

Proposed Project Features

- Turbine Location
- Substation
- ★ Hydrogen / Ammonia Plant Location

- Transmission Line, Existing
- Transmission Line, 230 kV
- Collector Line
- Access Road
- Project Area

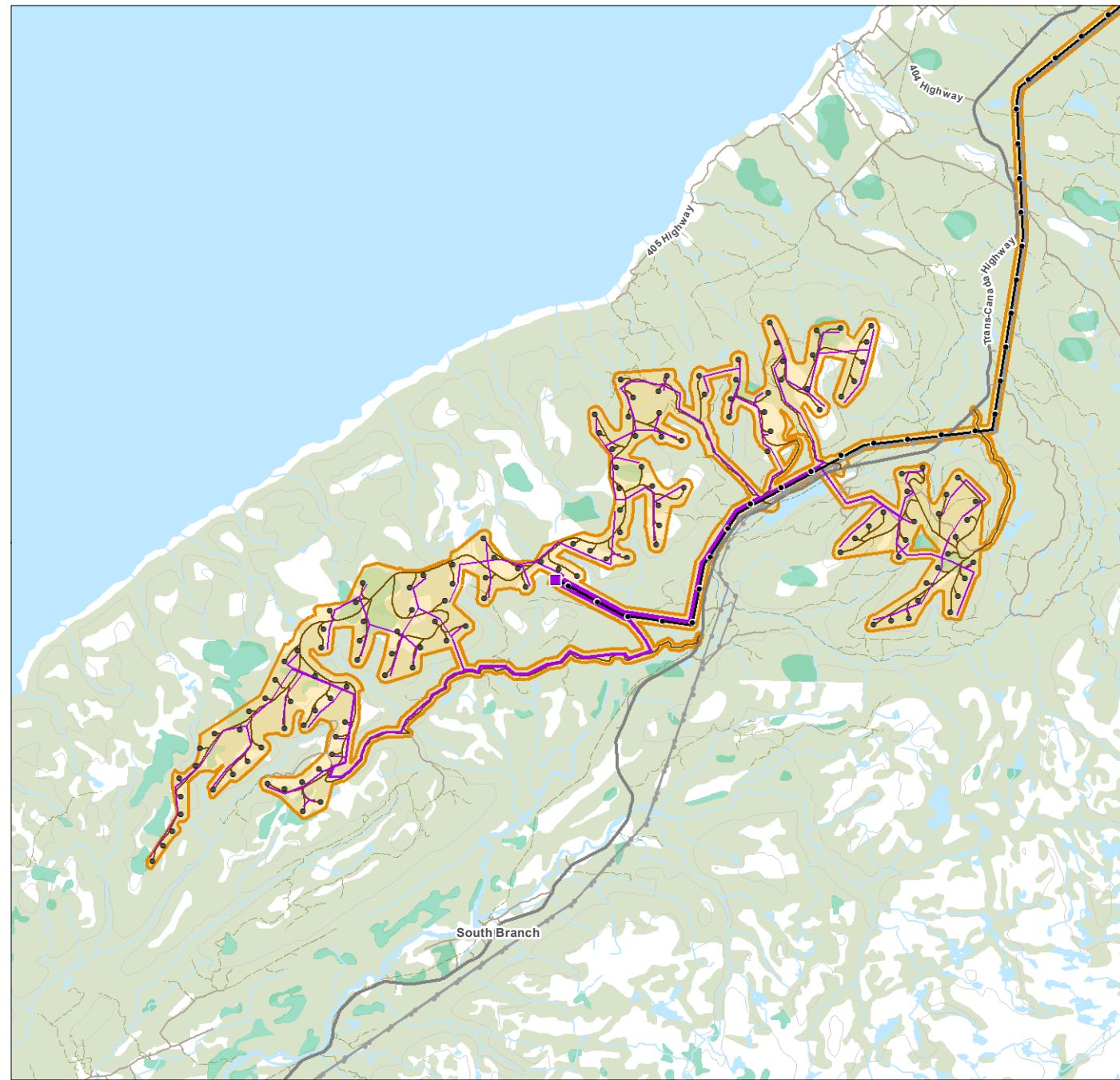

- Substation, Existing
- ⚡ Electrical Generation, Existing
- Transmission Line, Existing
- Trans-Canada Highway
- Road
- Contour (100 m)
- Watercourse
- Waterbody
- Wetland
- Forested Area

0 8 Kilometres
(At original document size of 8.5x11)
1:350,000

Notes

1. Coordinate System: NAD 1983 CSRS UTM Zone 21N
2. Data Sources: World Energy GH2, NRCan CanVec, OpenStreetMap
3. Background: NRCan CanVec

Project Location
Stephenville
NL


Prepared by MB on 2024-01-22
QR by AW on 2024-01-22

Client/Project
World Energy GH2
Project Nujjo'qonik

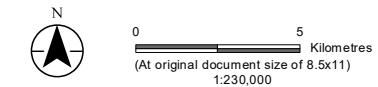
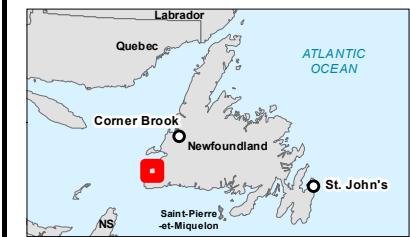

121418050_020

Figure No.
1.2


Proposed Project Features (Port au Port Wind Farm)

Proposed Project Features	Other Features
• Turbine Location	Transmission Line, Existing
■ Substation	Trans-Canada Highway
— Transmission Line 230 kV	Road
— Collector Line	Resource Road / Trail
— Access Road	Contour (100 m)
■ Project Area	Watercourse
	Waterbody
	Wetland
	Forested Area

Notes
1. Coordinate System: NAD 1983 CSRS UTM Zone 21N
2. Data Sources: World Energy GH2, NRCan CanVec, OpenStreetMap
3. Background: NRCan CanVec

Prepared by XX on 6/23/2023
OR by XX on 20XX-XX-XX

Client/Project 121417233-000a
World Energy GH2
Project Nujio'qonik

Figure No. 1.3

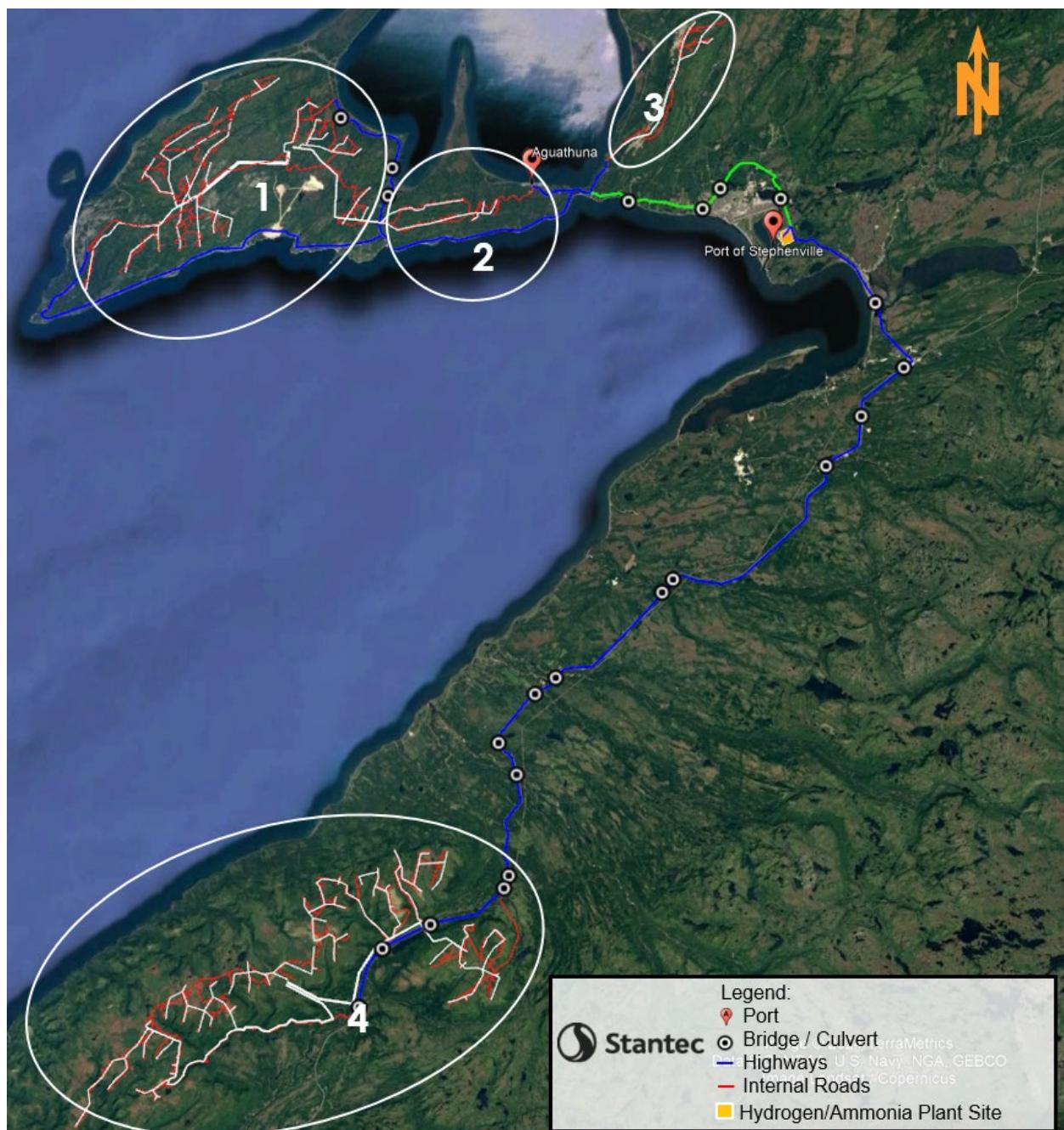
Proposed Project Features (Codroy Wind Farm)

1.2 SCOPE OF THE STUDY

A Transportation Impact Study (TIS) has been developed in consideration of the Section 7.2.4 of the EIS Guidelines. This study focuses on the potential effects of transporting oversized and overweight Project materials and equipment over existing roadways during construction, operation, maintenance, modification, and decommissioning, and rehabilitation phases of the Project. The marine transportation of Project materials is not considered in this study.

Among all phases of the Project, it is identified that the construction phase represents the worst-case scenario since oversized and overweight Project materials and equipment will be transported to the site during the construction period. It is also important to note that components for the construction of hydrogen/ammonia plant will be transported from the laydown areas at the Port of Stephenville to the adjacent construction site using the road network at the port and Harbour Drive, which is also used for delivery of oversized and overweight Project materials and equipment. Therefore, this study focuses on the impact of transporting oversized and overweight Project materials and equipment during the construction phase of the wind farms. In addition, a Traffic Management Plan and Swipe Path Analysis was conducted to confirm the site accessibility during the transporting of oversized and overweight Project materials and equipment or components. The TIS is focused on the following components:

- Existing infrastructure (i.e., roads) will be used to transport oversized and overweight Project materials and equipment during the construction phase of the wind farms.
- Traffic volume analysis for the proposed routes to be used for Project-related transportation.
- Mitigation measures including planned infrastructure to support barging component from the port or laydown areas to one of two landing sites.


As detailed below, the approach to this study has been developed based on both data provided by the client and NL government, and publicly available information.

2.0 ROAD INFRASTRUCTURE

This section of the report discusses the existing road infrastructure that will be used during all phases of the Project. For the convenience of traffic analysis, the wind farms are generally divided into four areas. Area 1 is located on the west side of the Port au Port peninsula, west of Route 463. Area 2 is located on the east side of the Port au Port peninsula, east of Route 463. Area 3 is located on the north of Stephenville, nearby the Route 462. Area 4 is located near the Codroy Pond and on both sides of the Trans-Canada Highway (Route 1). The existing road infrastructures that will be used during construction, operation, maintenance, modification, decommissioning and rehabilitation phases of the Project are shown in Figure 2.1.

PROJECT NUJIO'QONIK: UPDATED TRANSPORTATION IMPACT STUDY AND TRAFFIC MANAGEMENT PLAN

Figure 2.1 Road Infrastructure

PROJECT NUJIO'QONIK: UPDATED TRANSPORTATION IMPACT STUDY AND TRAFFIC MANAGEMENT PLAN

2.1 PORT / BARGING STATIONS

As previously noted, materials, equipment, and components, including oversized and overweight components, will be brought to the Port of Stephenville by ship, stored at the port itself or at additional laydown area secured/available at the Stephenville airport and distributed to the appropriate construction site. To reduce disruptions to local traffic flow on the Port au Port peninsula when necessary, and to manage the effort of transporting oversized and overweight project materials and equipment, Project materials and equipment may also be barged from the Port of Stephenville to Aguathuna on the peninsula.

Aguathuna will provide landing location for barges with turbine components and supporting materials and infrastructure for Area 1, Area 2, and Area 3 (Port au Port East turbine sites). For Areas 4 (Codroy Wind Farm), components, materials, and components will be delivered to the construction sites by road from the Port of Stephenville.

2.2 HIGHWAYS

Construction materials, equipment, and components for the wind farms and supporting infrastructure will be transported to Areas 1 to 4 using the local road network (Table 2.1). These routes will also be used to transport Project personnel to the construction sites.

Table 2.1 Highway Information

Road	Classification	Speed limit (km/h)	Number of Lanes	Area*
Route 1	Provincial Highway	100	2 / 3 / 4	4
Route 460	Regional Road	60	2	1 2 3 4
Route 462	Regional Road	50	2	3
Route 463	Regional Road	60	2	1
Route 490	Regional Road	80	2	1 2 3 4
Main Street/Aguathuna Road	Local Road	50	2	1 2 3
Harbour Drive	Local Road	50	2	1 2 3 4

*see Figure 2.1 for Areas defined for the purpose of the TIS

As shown in Figure 2.1, the delivery routes of oversized and overweight components for each Area of the Project are highlighted in blue as further described as follows:

- For Area 1, shipments from Aguathuna will cross Aguathuna Road to access internal roads in Area 2 and then cross Route 463 to access Area 1 sites for wind turbine installation. Alternatively, Route 460 and Route 463 are available to transport the turbine components from Aguathuna to the southwest and northeast portions of Area 1.
- For Area 2, shipments from Aguathuna will cross Aguathuna Road to access the internal roads.

PROJECT NUJIO'QONIK: UPDATED TRANSPORTATION IMPACT STUDY AND TRAFFIC MANAGEMENT PLAN

- For Area 3, trucks departing from Aguathuna will leave the landing area through Main Street/Aguathuna Road to access Route 460, then turn left to Route 462 to reach the Port au Port East site.
- For Area 4, trucks will start from Port of Stephenville, leave the port through Harbour Drive, turn right to Route 490, and finally turn right onto Route 1 to access the Codroy Wind Farm.

The delivery routes of other construction materials for each Area of the Project are highlighted in blue or green depend on whether the route overlaps with the delivery routes of turbine components or not:

- For Area 1, trucks departing from Port of Stephenville will leave the port through Harbour Drive and turn left to Route 490, then turn left to Route 460. Trucks will turn right to Route 463 to access the rest of the Area 1. Alternatively, some trucks will continue drive on Route 460 until reach the southwest portion of the Area 1 site.
- For Area 2, trucks departing from Port of Stephenville will leave the port through Harbour Drive and turn left to Route 490, then turn left to Route 460, finally access the Area 2 site through Aguathuna Road.
- For Area 3, trucks departing from Port of Stephenville will leave the port through Harbour Drive and turn left to Route 490, then turn left to Route 460, and finally turn right to Route 462 to access the Port au Port East site.
- For Area 4, the route is the same as the delivery routes of oversized and overweight components.

A truck swept path analysis has been completed as part of this assessment and is discussed in a later section of this report.

2.3 BRIDGES AND CULVERTS

Bridges and large diameter culverts that exist on the transportation routes are listed in Table 2.2. The location of bridges and culverts can be found on Figure 2.1. There are no existing bridges or large diameter culverts along the routes from Aguathuna to Area 2 and Area 3.

Table 2.2 Bridges and Culverts Information

ID	Road	Structure Name	Structure Type	Year Built	Design Load Code
Aguathuna to Area 1					
1	Route 463	Harry's River Multi-Plate	Culvert (Steel)	1974	N/A
2	Route 463	Piccadilly Slant Multi-Plate	Culvert (Steel)	1975	N/A
3	Route 463	Piccadilly Multi-Plate	Culvert (Steel)	1974	N/A
Port of Stephenville to Area 1, 2, and 3					
4	Route 490	Noel's Pond Multi-Plate	Culvert (Steel)	1983	N/A
5	Route 460	Blanche Brook Bridge	Bridge (Conc.)	1980	MS200
6	Route 460	Gadons Brook Bridge	Bridge (Conc.)	1995	CS-600
7	Route 460	Romaines River Bridge	Bridge (Conc.)	1955	Unknown

PROJECT NUJIO'QONIK: UPDATED TRANSPORTATION IMPACT STUDY AND TRAFFIC MANAGEMENT PLAN

Table 2.2 Bridges and Culverts Information

ID	Road	Structure Name	Structure Type	Year Built	Design Load Code
Port of Stephenville to Area 4					
8	Route 490	Main Gut Bridge ¹	Bridge (Conc.)	1973	HS 20-44
9	Route 1	Little Barachois Brook Bridge	Bridge (Conc.)	2021	CL-625
10	Route 1	First Dribble Pond Culvert	Culvert (Steel)	1964	N/A
11	Route 1	Flat Bay Brook Bridge	Bridge (Conc.)	2009	CL-625
12	Route 1	Fischell's Brook Bridge	Bridge (Conc.)	2010	CL-625
13	Route 1	Little Fischell's River Multi-Plate	Culvert (Steel)	1982	N/A
14	Route 1	Robinson's River Bridge	Bridge (Conc.)	2012	CL-625
15	Route 1	Middle Barachois River Bridge	Bridge (Conc.)	2011	N/A
16	Route 1	Little Crabbes River	Culvert (Steel)	1968	N/A
17	Route 1	Crabbe's River Bridge	Bridge (Conc.)	1994	CS-600
18	Route 1	Highlands River Bridge (River BK.)	Bridge (Conc.)	2006	CL-625
19	Route 1	Bald Mountain Brook Bridge	Bridge (Conc.)	1961	HS 20-44
20	Route 1	Codroy Pond CNR Overpass	Arch Culvert (Steel)	2006	N/A
21	Route 1	Morris Brook Bridge	Bridge (Conc.)	1955	HS 20-44
22	Route 1	North Branch CNR Overpass	Culvert (Steel)	1997	N/A

2.4 INTERNAL ROADS

In addition to the existing road infrastructures, a series of internal/project roads will be constructed to be used throughout the life of the Project including transport the materials, equipment, and components to and around the wind farm sites and to support on-going maintenance. As shown in Figure 2.1, the internal roads highlighted in red will be used to connect the barge landing sites or public roads to the turbine locations. The internal roads will be designed and constructed to accommodate the weight, size and turning movements of the trucks and equipment.

3.0 TRAFFIC ANALYSIS

This section discusses the potential traffic impact of transporting oversized and overweight Project materials, equipment, and components over existing roadways. The peak daily trips generated by the Project will be estimated based on the site trips planned during the construction phase, when the majority of oversized / overweight cargo will occur.

¹ In 2024, a structural assessment of the Main Gut Bridge was conducted, confirming its capability to bear the load of overweight components.

3.1 ANNUAL AVERAGE DAILY TRAFFIC VOLUME

The locations and annual average daily traffic (AADT) volumes of selected intersections provided by the NL Department of Transportation and Infrastructure are listed in Table 3.1. The location of the data collection points and AADT of each segment are illustrated in Figure 3.1. No growth rate was applied to the AADTs. The detailed AADTs are included in Appendix A.

Table 3.1 Intersections with AADT Data

Intersection	Legs	2013 AADT	Heavy Vehicle (HV)%
Route 1 and Route 490	North (Corner Brook)	1,537	28.32%
	West (Stephenville)	1,079	12.82%
	South (Channel - P.A.B)	2,166	29.51%
Route 1 and Route 403	North (Corner Brook)	2,039	26.46%
	West (Flat Bay)	333	3.61%
	South (Channel - P.A.B)	1,737	27.86%
Route 1 and Route 404	North (Corner Brook)	1,619	37.39%
	West (Robinsons)	338	4.92%
	South (Channel - P.A.B)	1,144	28.64%
Route 1 and Route 404	North (Corner Brook)	1,244	29.13%
	West (Jeffrey's)	194	4.49%
	South (Channel - P.A.B)	1,295	25.55%
Route 1 and Route 405	North (Corner Brook)	1,173	10.62%
	West (St. Davids)	218	4.15%
	South (Channel - P.A.B)	908	23.38%
Route 460 - Boswarlos - Stephenville	West (Boswarlos)	8,169	27.19%
	South (Route 460)	2,566	8.08%
	East (Stephenville)	1,683	39.76%
Route 490 and Seal Cove Road	North (Stephenville Crossing)	1,154	13.80%
	West (Stephenville)	3,858	7.24%
	East (Route 1)	2,789	12.69%
Romaines River Bridge	-	1,200	Not Available
Main Gut Bridge	-	3,858	Not Available
Crabbe's River Bridge	-	2,081	Not Available
Morris Brook Bridge	-	2,871	Not Available

PROJECT NUJIO'QONIK: UPDATED TRANSPORTATION IMPACT STUDY AND TRAFFIC MANAGEMENT PLAN

Source: Google Earth

Figure 3.1 AADT Locations

PROJECT NUJIO'QONIK: UPDATED TRANSPORTATION IMPACT STUDY AND TRAFFIC MANAGEMENT PLAN

The maximum AADT recorded in the road network is 8,169. This was recorded on the west side of the Port au Port isthmus. The capacity of a two-lane highway is 1,700 vehicles per hour (veh/h) for each direction of travel (Transportation Research Board, 2000). To determine the peak hour volume at each travelling direction, it is assumed that the peak hour volume is 10% of the AADT and traffics are evenly distributed in two directions. The result peak hour volume at each travelling direction is about 410 veh/h, which is well below the default capacity of 1,700 veh/h for a two-lane highway road. Several peak hour counts were collected at various locations on Route 460, Route 463, and Route 490 in 2023. All peak hour volumes collected in 2023 are lower than 200 veh/h. Therefore, it confirms that the peak hour volumes in the study area is considerably below the road capacity.

3.2 TRIP ESTIMATION

It is expected that the turbine installation will generate the highest traffic volumes which mainly include turbine component delivery trips, construction material delivery trips, and trips generated by construction staff and other personnel. It is expected that the site trips will be limited to a few weekly maintenance and site visit trips after sites become fully operational.

3.2.1 Turbine Delivery Trips

It is assumed that up to 3 turbines will be shipped to construction sites per week during the construction phase. The construction of each wind farm will not be conducted simultaneously. Construction crews will finish one area then move on to the next. It is estimated that each turbine comprised 12 to 14 components/shipments to transport to a wind farm site. The number of turbine component delivery trips per day results from the above assumptions is up to 6 deliveries per day. The number of round trips per day and days of delivery are provided in Table 3.2.

Table 3.2 Estimated Turbine Delivery Round Trips

Areas	Number of turbines	Number of Components	Daily Delivery Round Trips	Days of Turbine Delivery
Area 1	117	1,638	6	273
Area 2	23	322	6	54
Area 3	15	210	6	35
Area 4	143	2,002	6	334
Total	298	4,172	N/A ²	696

3.2.2 Construction Material Delivery Trips

In addition to turbine delivery trips, other construction materials such as transmission line and transformer station components and materials will be shipped from Stephenville to each site. It was estimated that up to 30 construction material delivery round trips will be made per day.

² The delivery to the different areas will happen sequentially.

PROJECT NUJIO'QONIK: UPDATED TRANSPORTATION IMPACT STUDY AND TRAFFIC MANAGEMENT PLAN

3.2.3 Personnels Trips

During the construction phase of the Project, it is estimated that approximately 400 workers will be residing in accommodations camps. Staff will be based in Stephenville and Codroy during construction of Port au Port site and Codroy site respectively, and shuttles will be provided for their commute. It is estimated that 10 shuttles are required to transport the staff back and forth between accommodations camps and project sites. In addition, it is assumed that 5 personal trips from Stephenville and 5 personal trips from the nearest ferry (i.e., Port aux Basques) to the Project sites will be made by contractors, inspectors, surveyors, and supervisors.

3.2.4 Overall Estimated Future Trips

The overall estimated peak daily round trips during the turbine installation phase are shown in Table 3.3.

Table 3.3 Estimated Peak Future Round Trips per Day during Turbine Installation

From\To	Area 1	Area 2	Area 3	Area 4
Port of Stephenville	45	45	45	41
Aguathuna	6	6	6	0
Codroy	0	0	0	10
Port aux Basques	5	5	5	5
Total	56	56	56	56

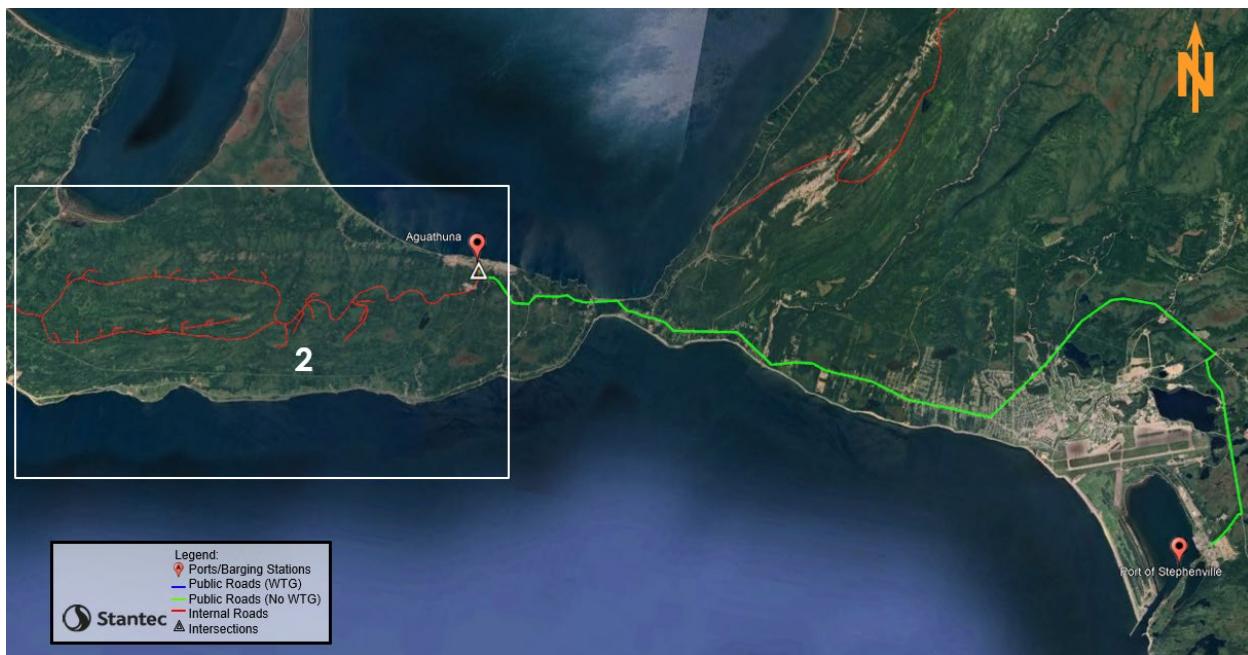
3.3 TRAFFIC IMPACT FOR AREA 1

As shown in Figure 3.2, the Area 1 site is located on the west side of Route 463. Oversized and overweight components can be barged to the Aguathuna site and transported by land to the construction site. Shipments from Aguathuna will cross Aguathuna Road to access internal roads in Area 2 and then cross Route 463 to access Area 1 sites for wind turbine installation. Route 460 and Route 463 are available to transport the turbine components from Aguathuna to the southwest and northeast portions of Area 1 as an alternative. It is estimated that up to 6 round trips will take place between barging stations and wind farm site in one day during the construction season.

When trucks are making turns at the intersections or crossing a major highway, traffic will need to be stopped for up to 5 minutes to allow a truck to pass. Two traffic controller persons will be needed for each crossing location during this process. This issue will be further discussed in Section 4.1. Considering the traffic volume on Route 463 is fairly low, it is not expected that this process to be a cause for congestion at the crossing point.

For the delivery of other construction materials and transportation of workers, up to 50 daily round trips will be added to the road network which will not bring noticeable impact to the road network and is within the design capacity of the road network.

Source: Google Earth


Figure 3.2 Wind Farm Area 1

3.4 TRAFFIC IMPACT FOR AREA 2

As shown in Figure 3.3, Area 2 is located on the east side of Route 463. The turbine components can be barged to the Aguathuna landing site and then will be transported to the internal roads of the wind farm. Trucks need to cross Aguathuna Road when bringing material and equipment from landing site to the wind farm site.

For the delivery of oversized and overweight components, it is estimated that 6 round trips will be made between the landing site and wind farm in one day during the construction season. When trucks are crossing Aguathuna Road, traffic will need to be stopped for up to 5 minutes to allow a truck to pass. Two traffic controller persons will be needed for each intersection. This issue will be further discussed and monitored as part of the Traffic Management Plan (Stantec 2023). Considering the traffic volume on Aguathuna road are low, it is not expected to cause congestion at the crossing point.

For the delivery of other construction materials and transportation of workers, up to 50 daily round trips will be added to the road network which will not bring noticeable impact to the road network.

Source: Google Earth

Figure 3.3 Wind Farm Area 2

3.5 TRAFFIC IMPACT FOR AREA 3

As shown in Figure 3.4, Area 3 includes turbines on the east side of Port au Port Bay and is located to the north of Stephenville. Oversized and overweight components can be barged to the Aguathuna site and transported by land to the construction site. The delivery route is highlighted in blue. Trucks will use Main Street/Aguathuna Road, Route 460, and Route 462. This route is selected to avoid passing through the residential areas of Stephenville and Kippens.

For the delivery of oversized and overweight components, it is estimated that 6 round trips per day will be made between the Aguathuna site and Port au Port East site during the construction season. When trucks are making turns at the intersections, traffic will need to be stopped for up to 5 minutes to allow a truck to pass. An approved traffic management plan with appropriate traffic control will be needed for each intersection.

For the delivery of other construction materials and transportation of workers, up to 50 daily round trips will be added to the road network which will not bring noticeable impact to the road network and is within the design capacity of the road network.

PROJECT NUJIO'QONIK: UPDATED TRANSPORTATION IMPACT STUDY AND TRAFFIC MANAGEMENT PLAN

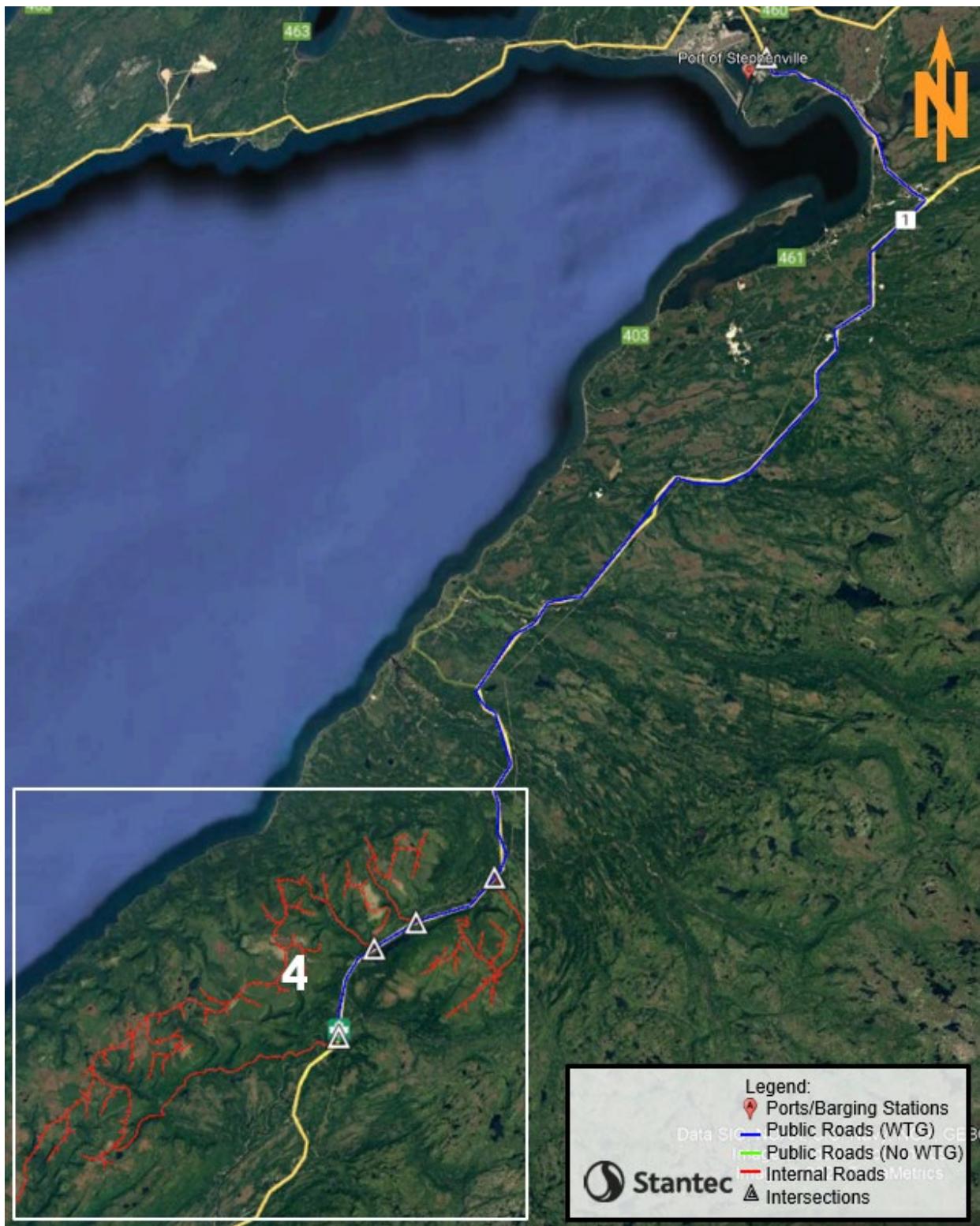
Source: Google Earth

Figure 3.4 Wind Farm Area 3

PROJECT NUJIO'QONIK: UPDATED TRANSPORTATION IMPACT STUDY AND TRAFFIC MANAGEMENT PLAN

3.6 TRAFFIC IMPACT FOR AREA 4

As shown in Figure 3.5, the Codroy Wind Farm is within Area 4 which is south of Stephenville. Materials, equipment, and components will be delivered by road to Area 4 from the Port of Stephenville. Trucks will start from Port of Stephenville, leave the port through Harbour Drive, turn right to Route 490, and finally turn right onto Route 1 to access the Codroy Wind Farm.


For the delivery of oversized and overweight components, It is estimated that 6 round trips will be made between the Port of Stephenville and Area 4 in one day during the construction season. When trucks are making turns at the intersections, traffic will need to be stopped for up to 5 minutes to allow a truck to pass. Two traffic controller persons will be needed for each intersection.

Although the route between Port of Stephenville and Area 4 is considerably longer than the other routes, and the travelling speed of the transport vehicle is lower than the posted speed on Route 1, the majority of sections of Route 1 have more than one lane in each direction which may reduce the impact of the transport vehicle to the general traffic. It is recommended to have escort vehicles to warn the traveling public or other motorists and schedule the delivery to avoid the ferry traffics between Stephenville and Port aux Basques. Figure 3.6 illustrates time windows of ferry traffics between Stephenville and Port aux Basques according to the Port aux Basques ferry summer schedule (Marine Atlantic 2023).

For the delivery of other construction materials and transportation of workers, up to 45 daily round trips will be added to the road network which will not bring noticeable impact to the road network.

PROJECT NUJIO'QONIK: UPDATED TRANSPORTATION IMPACT STUDY AND TRAFFIC MANAGEMENT PLAN

Source: Google Earth

Figure 3.5 Wind Farm Area 4

PROJECT NUJIO'QONIK: UPDATED TRANSPORTATION IMPACT STUDY AND TRAFFIC MANAGEMENT PLAN

Traffic Direction	4:00	5:00	6:00	7:00	8:00	9:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00	17:00	18:00	19:00	20:00	21:00	22:00	23:00	0:00	1:00	2:00	3:00		
Traffics from Stephenville to Port aux Basques							Wed. Only																			
Traffics from Port aux Basques and Stephenville																									Wed. Only	

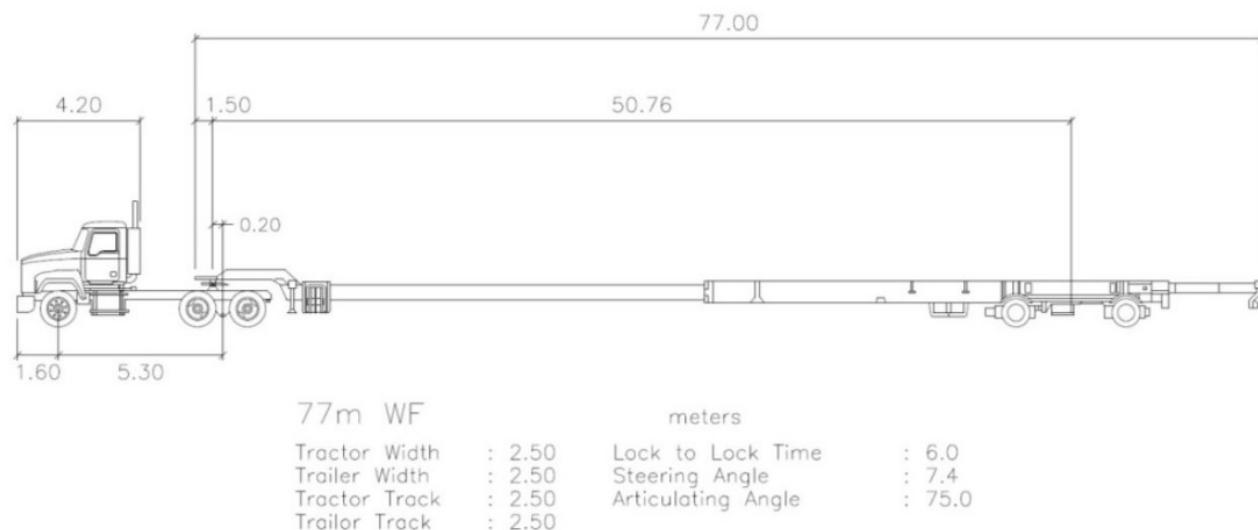
* Red blocks represent the ferry traffics hours between Stephenville and Port aux Basques

Figure 3.6 Time Windows of Ferry Traffic between Stephenville and Port aux Basques

4.0 TRANSPORT METHODS

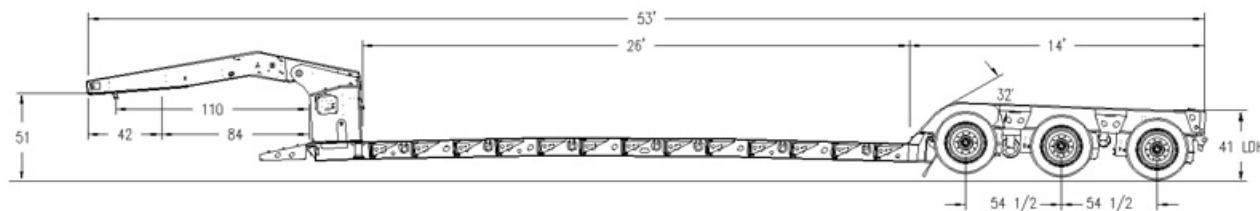
For Areas 1 and 2, it has been assumed that oversized and overweight equipment and materials will arrive via barging and landing at Aguathuna. From there they will be transported to the development site. Local roads can be used as alternative routes. For Area 3, it has been assumed that oversized and overweight equipment and materials will arrive via barging and landing at Aguathuna as well. Area 3 is approximately 8 km in length using the existing road network from Aguathuna. For Areas 4, it has been assumed that oversized and overweight equipment and materials will arrive at the Port of Stephenville. Area 4 is approximately 120 km in length from the Port of Stephenville. The alignment assessments were conducted along these routes, between the Port of Stephenville and the wind turbines.

There are several horizontal and vertical alignment elements that were assessed to confirm if the transporter vehicle has the appropriate clearances for height and width. 90-degree turns were reviewed to determine if the maneuver can be made and if not, what modifications would be required, such as clearing, additional extra roadway and shoulder width, property encroachment, relocation of infrastructure, lengthening of culverts, and other potential temporary upgrades. The vertical clearances were assessed at the underpass structures and overhead utility locations that the transporter vehicle will pass under.


For the assessment of the horizontal clearances, Stantec used AutoCAD and Civil3D software with the specialized add-on software AutoTURN, that mimics the travel path of the design vehicle to verify wheel paths and overhang boundaries for specified movements. Without the aid of detailed profile information for the roads and ramps identified, there were limitations in being able to accurately determine if there are any significant limitations along the travel route, however, based on Google Street View and NLDTI's Bridge Inventory List, vertical clearance assessments were made, and recommendations provided that are beneficial to the overall route assessment. The assessment included a summary of challenges or problem areas along the route and provided recommendations for mitigation. More refined assessments should be conducted once the equipment and transporter vehicle loads and dimensions are finalized.

4.1 TRANSPORTER VEHICLE DESCRIPTION

Swept path assessments (using AutoTURN) for each of the key intersections and potential pinch points along the route were undertaken. An 82.0-metre-long wind farm transporter vehicle was used for the route assessment, starting at the Port / Barging Stations and ending at the corresponding wind turbine areas. Figure 4.1 illustrates the vehicle template for the 82-metre-long wind farm truck and trailer assembly. For this assessment, the return route was not assessed. It is anticipated that the overall trailer length is reduced on the return trip to that of a standard tractor trailer, thus being able to navigate the geometry at roadway and interchange locations, with no challenges or pinch points.



PROJECT NUJIO'QONIK: UPDATED TRANSPORTATION IMPACT STUDY AND TRAFFIC MANAGEMENT PLAN

Figure 4.1 82 m Wind Farm Transporter Vehicle (77 m Blade)

It is also anticipated that other transporter vehicles will be used to facilitate transporting the other wind farm components, including generators, transformers, and turbines. It is anticipated that the vehicles used for this equipment will be via a 53-foot-long tractor trailer assembly and larger, similar to the float trailer illustrated in Figure 4.2, with the float trailer and truck having additional axles to distribute the heavy loads. Since these vehicles are of standard length, an assessment of the horizontal clearances was not conducted, as it does not exceed the footprint of the longer transport vehicle for the wind farm blades. As the vehicle loads and dimensions of the equipment and components have not been fully defined, the vertical clearances and structural load capacities of the bridges, overpasses and culverts will need to be assessed once they are known.

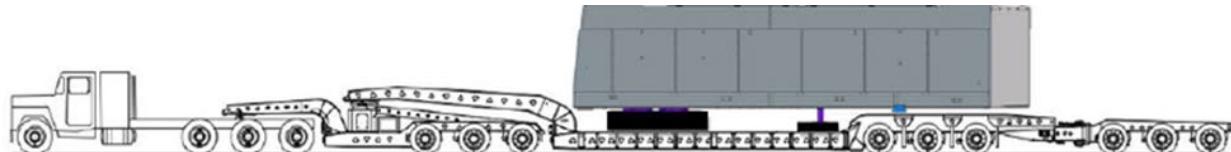


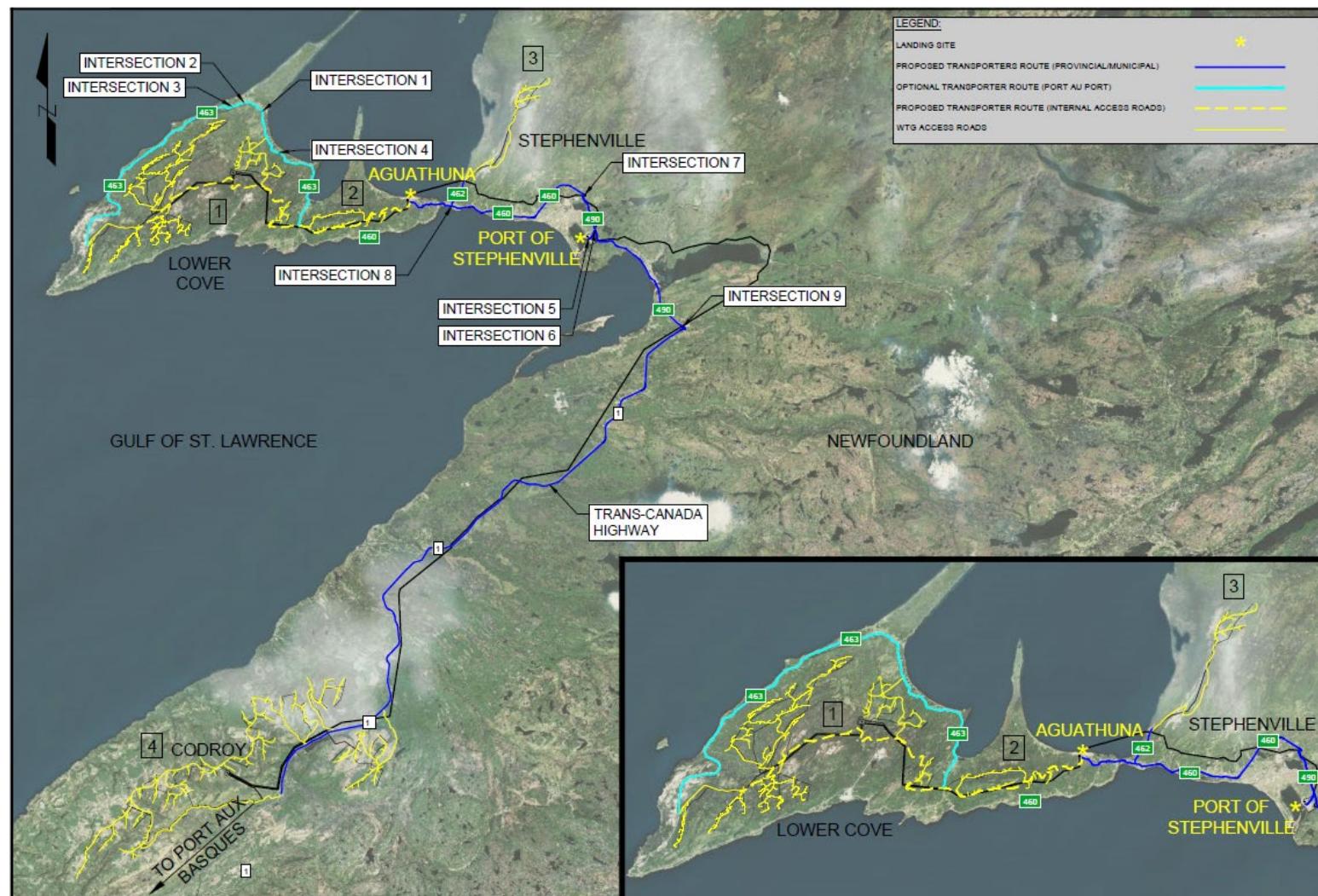
Figure 4.2 53 Foot Gooseneck Float Trailer (Imperial Measurements)

PROJECT NUJIO'QONIK: UPDATED TRANSPORTATION IMPACT STUDY AND TRAFFIC MANAGEMENT PLAN

Figure 4.3 illustrates a typical style of transport unit for the various configurations of components for heavy and oversized loads. It is anticipated that 2 or 3 different trailer configurations for heavy loads (towers, blades, and transformers) will be equipped with a steerable rear unit. Table 4.1 provides a summary of the preliminary components per turbine.

Figure 4.3 Typical Transporter Vehicle Unit

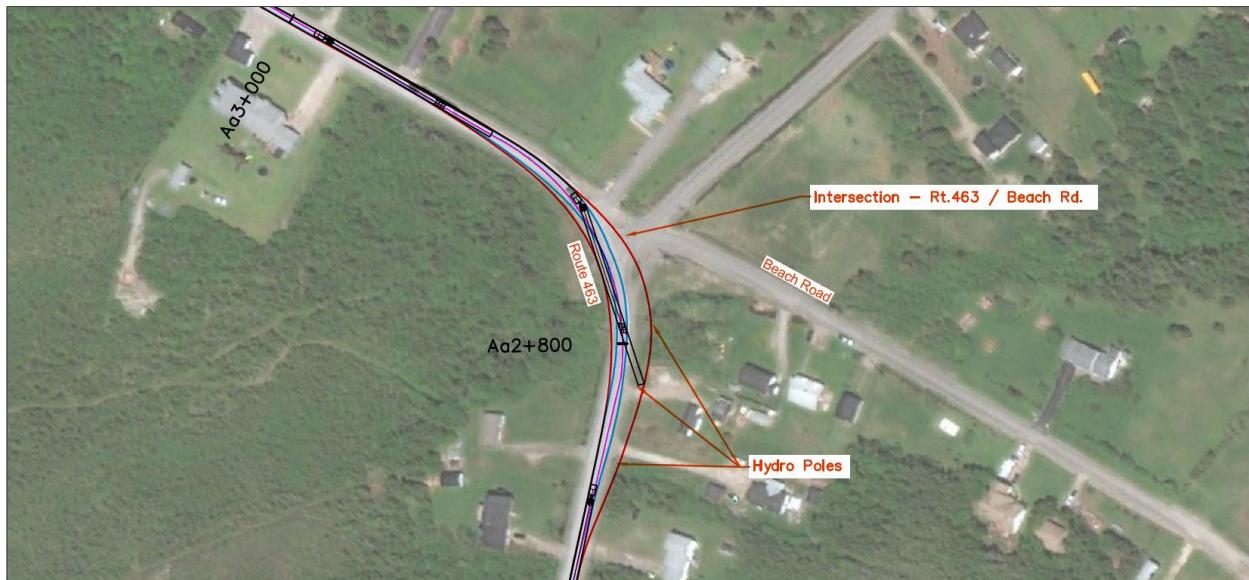
Table 4.1 Preliminary Breakdown of Transport Unit Components Per Wind Turbine


Component	Weight	Dimensions	Assumptions
1x Nacelle	60 to 85 tonnes	15 m x 4.5 m x 4.5 m	Assuming shipped in 'empty' configuration
1x Drivetrain	80 to 100 tonnes	7.5 m x 3 m x 3 m	
1x Hub	50 to 60 tonnes	5 m x 4.5 m x 4.3 m	
3x Blades	20 to 30 tonnes	L = 70 m to 90 m Dia. 4.5 m x 3.0 m	
4 to 5x Tower Sections	50 to 90 tonnes	L = 20 to 30 m Dia. 4 m to 5 m	
3x loads of smaller components	< 20 tonnes	varies	

Based on the methods and transporter vehicle specifications identified in the sections above, a horizontal clearance assessment through a swept path analysis was performed. The analysis used the methods and transporter vehicle specifications identified in Section 4 and as described in Figure 4.1. Based on the analysis, nine (9) intersections were identified that pose potential turn movement conflicts along the described routing. The figures below illustrate the required path and the table in this section summarizes the locations with proposed mitigation measures for the required movements.

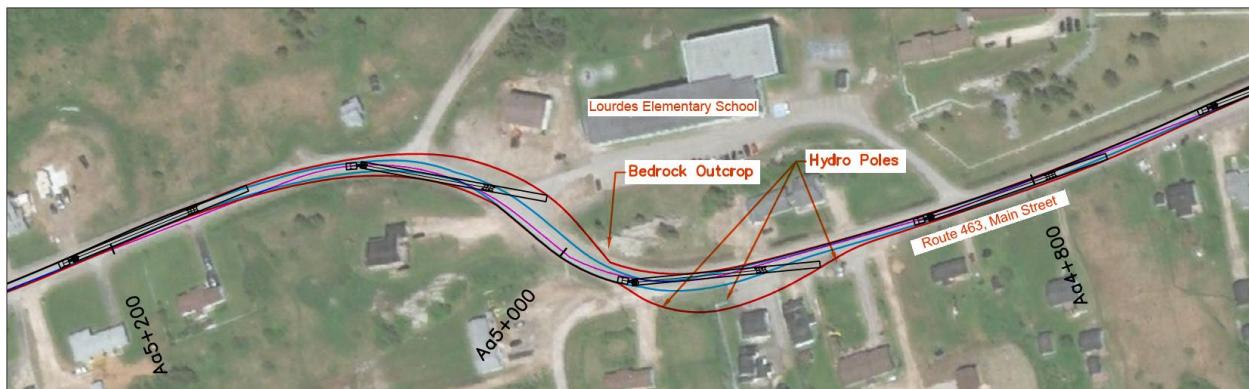
The results of the swept path analysis for the route are provided below, including an overall map of the routes and the specific locations with zoomed in images (Figure 4.4 to 4.13) and provides a summary of the assessment in Table 4-1. It is anticipated that, with the exception of the Trans-Canada Highway, a number of the routes will require lane closures in order for the transporter vehicle to maneuver along the provincially designated and local roadways.

PROJECT NUJO'QONIK: UPDATED TRANSPORTATION IMPACT STUDY AND TRAFFIC MANAGEMENT PLAN



Source: Google Maps

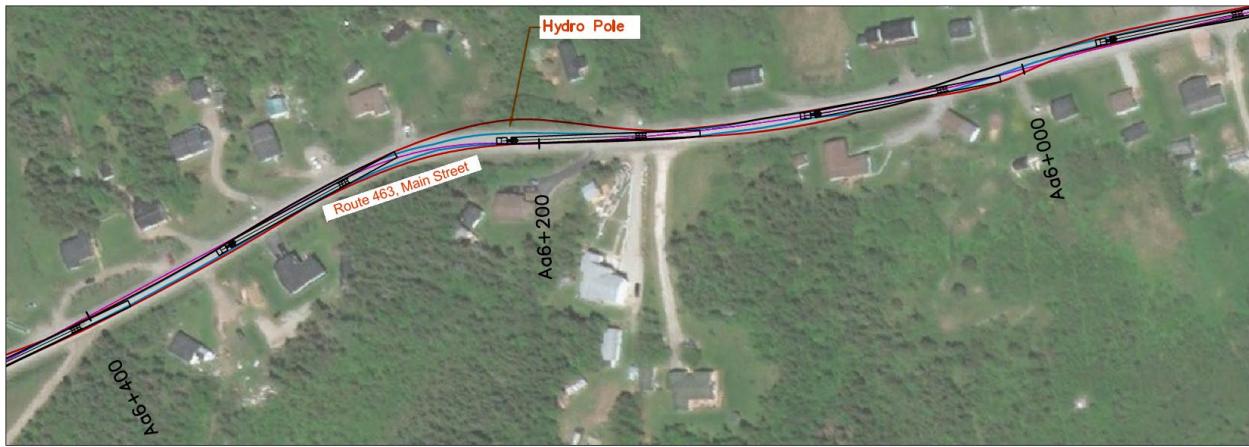
Figure 4.4 Overall Route Plan Illustrating Conflict Locations



PROJECT NUJIO'QONIK: UPDATED TRANSPORTATION IMPACT STUDY AND TRAFFIC MANAGEMENT PLAN

Source: Google Maps

Figure 4.5 Intersection 1



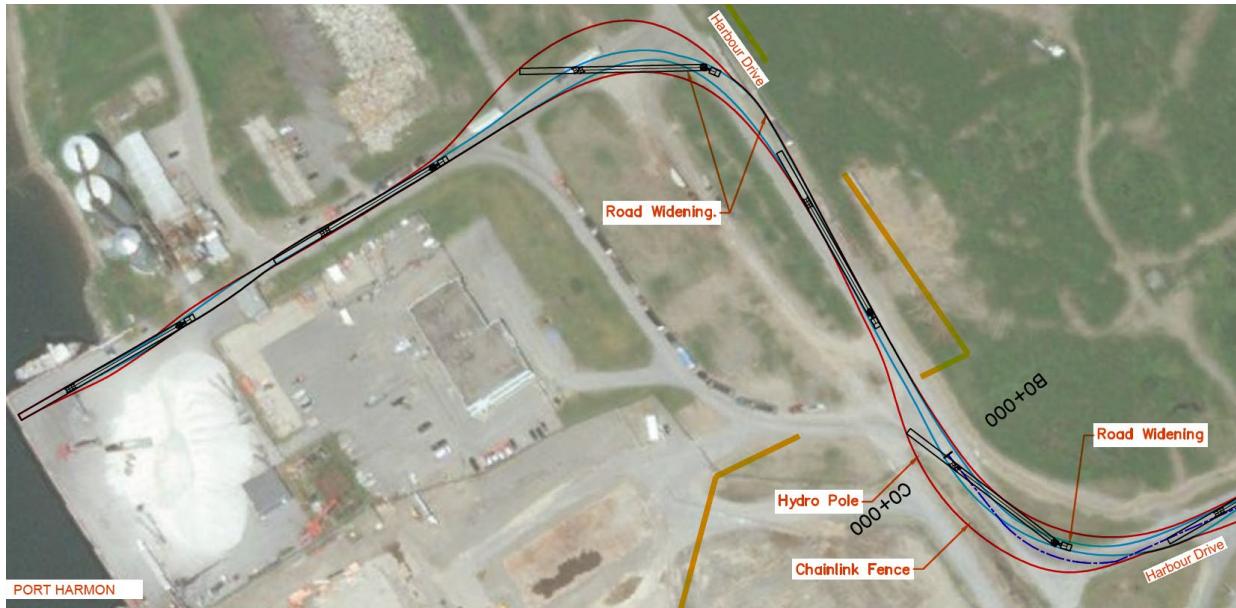
Source: Google Maps

Figure 4.6 Intersection 2

PROJECT NUJIO'QONIK: UPDATED TRANSPORTATION IMPACT STUDY AND TRAFFIC MANAGEMENT PLAN

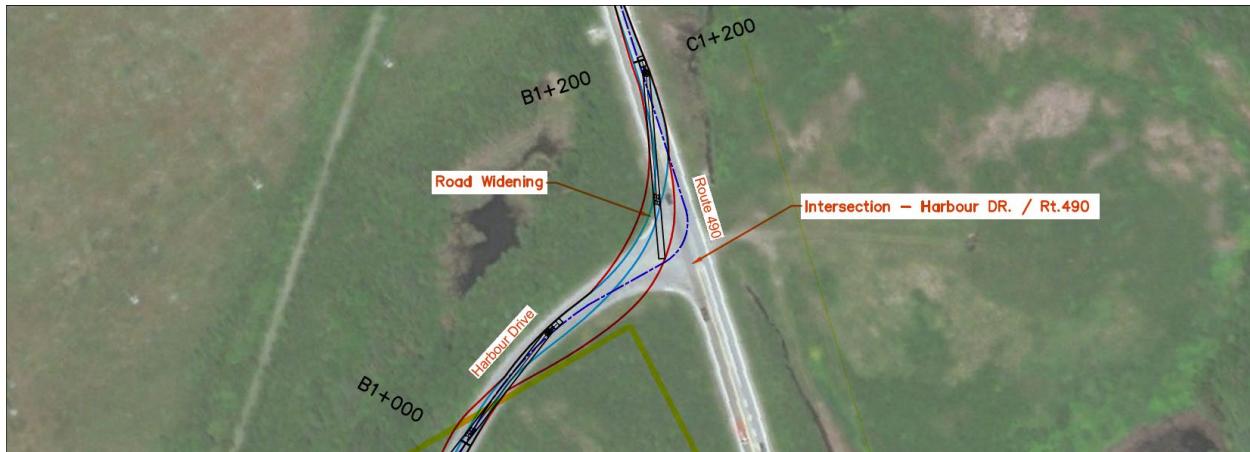
Source: Google Maps

Figure 4.7 Intersection 3



Source: Google Maps

Figure 4.8 Intersection 4



PROJECT NUJIO'QONIK: UPDATED TRANSPORTATION IMPACT STUDY AND TRAFFIC MANAGEMENT PLAN

Source: Google Maps

Figure 4.9 Intersection 5

Source: Google Maps

Figure 4.10 Intersection 6

PROJECT NUJIO'QONIK: UPDATED TRANSPORTATION IMPACT STUDY AND TRAFFIC MANAGEMENT PLAN

Source: Google Maps

Figure 4.11 intersection 7

Source: Google Maps

Figure 4.12 Intersection 8

PROJECT NUJIO'QONIK: UPDATED TRANSPORTATION IMPACT STUDY AND TRAFFIC MANAGEMENT PLAN

Source: Google Maps

Figure 4.13 Intersection 9

PROJECT NUJIO'QONIK: UPDATED TRANSPORTATION IMPACT STUDY AND TRAFFIC MANAGEMENT PLAN

Table 4.2 Summary of Swept Path Assessment

Figure No.	Wind Farm Site	Location	Comment
4-2	Area 1 (optional)	Route 463 (Main St.) at Beach Road, Port au Port	Hydro poles located on west side of RTE 463. *This route would be optional should the transport vehicle use the existing public roadway vs. utilizing internal access roads at Area 1.
4-3	Area 1 (optional)	Route 463 (Main St.), Port au Port	Hydro poles located on south side of RTE 463 and large bedrock outcrop. * This route would be optional should the transport vehicle use the existing public roadway vs. utilizing internal access roads at Area 1.
4-4	Area 1 (optional)	Route 463 (Main St.), Port au Port	Hydro pole located on north side of RTE 463. *This route would be optional should the transport vehicle use the existing public roadway vs. utilizing internal access roads at Area 1.
4-5	Area 1 / 2 (optional)	Route 463, Port au Port	Hydro pole located on south side of RTE 463. *This route would be optional should the transport vehicle use the existing public roadway vs. utilizing internal access roads at Areas 1 and 2.
4-6	Port Exit, Area 4	Offloading to Harbour Drive	Roadway widening work within the port access roads, hydro poles and overhead lines crossing. It should be noted that a finalized swept path analysis should be completed as part of the overall logistics of offloading at the Port to the laydown area to minimize impact to the existing infrastructure and need for roadway widening where feasible.
4-7	Port Exit, Area 4	Harbour Drive and Route 490	Minor clearing and widening work at intersection.
4-8	Port Exit Area 4	Route 490 / Minnesota Drive / Route 460 westbound and eastbound	Clearing and widening work at intersection approaches. Temporary removal of signage (regulatory, warning and wayfinding). Hydro pole impacts and overhead lines crossing.
4-9	Area 3	Intersection Route 460 (Main St) and Route 462 (Hynes Rd)	Widening work at intersection through encroachment onto residential and commercial properties (Western Petroleum), including temporary removal of commercial signage. Hydro pole impacts and overhead lines crossing.
4-10	Area 4	Route 460 / Trans-Canada Highway Interchange (RTE 1)	Clearing and widening work at TCH on ramp SB. Temporary removal of regulatory, warning and wayfinding signage. Movement is provided for the return transport vehicle at the RTE 460 off ramp WB. It should be noted that the return unloaded transporter vehicle could return to Port the RTE 490 / TCH interchange provided weight requirements are met for Main Gut Bridge. However, it's anticipated that the overall trailer length can be reduced on the return trip to that of a standard tractor trailer, thus being able to navigate the roadway geometry and at interchange and intersection locations, with no challenges or pinch points.

*Transporter vehicle movements will need to be accompanied by pilot vehicles and include an appropriate traffic management plan acceptable to NLTI Provincial requirements (Traffic Control Manual, latest edition).

4.2 SITE ACCESS ROADWAY UPGRADES

The swept path analysis indicates that site-specific intersection upgrades are required to accommodate the identified transporter vehicle. Tree clearing, temporary widening, signage and hydro poles will require modification or removal at the identified intersections in order to accommodate the transporter vehicle. The site-specific upgrades would be assessed in further detail through a comprehensive route analysis and agreed to with NLDTI and WEGH2 through the permitting process, prior to commencing work.

Each of the vehicle access and egress points to the site(s) and the internal access road network should be designed to accommodate the swept path requirements of the largest transporter vehicle.

Along the routes, there are several smaller diameter culverts with varying depths of cover. Of less concern are the culverts under Route 1, however, under the other roadways, many of the small diameter culverts have minimal cover and may require further assessment on a case-by-case basis, depending on the loads, dimensions and axel configurations of the final transporter vehicle and float trailers.

Speed reductions along the routing will be required during the construction phase to provide a safer environment for all roadway users, particularly along the Trans-Canada Highway (Route 1), where the reduction should be from 100 km/h to 70 km/h. This would need to be discussed and agreed to by NLDTI.

4.3 VERTICAL CLEARANCE ASSESSMENT

Based on the transporter vehicle described in Figure 4.1, there are no apparent clearance limitations at any of the underpass structures along the routes. There are also multiple locations along the route where there are overhead utilities (e.g., power, communication). Without any survey information available, it is assumed that the heights of the overhead utilities exceed the minimum roadway clearance requirements for arterial and collector roadways of 5.03 metres.

Based on the transporter vehicles defined in Figures 4.1 to 4.3, the ground clearance at structure locations will need to be assessed to ensure the trailer does not bottom out. Based on the condition and standard of the Trans-Canada Highway (Route 1), and it being subjected to oversize and overweight vehicles and loads in the past, it is not anticipated that ground clearance will be cause for concern, however, an assessment is recommended once more information is known on the dimensions of the transporter vehicles.

4.4 HYDRO CONFLICTS

Utility poles and transmission lines along the roadside will potentially be impacted, during the transporting of oversized and overweight equipment or components. Scenarios such as those shown in Figures 4.14 and 4.15 should be inspected and evaluated to determine the appropriate mitigation method(s) required during transportation and construction. The specific occurrences of scenarios shown in Figures 4.14 and 4.15 will be further reviewed during detailed design of the Project.

Figure 4.14 Example of Crossing at an Existing Public Road to WTG Site (Ex. Crossing between Route 463 and Internal Road from the Area 2 Wind Farm Site to the Area 1 Wind Farm Site)

Figure 4.15 Example of Trucks Driving under Overhead Wires (Route 490 near Newfoundland T'Railway)

4.5 LOAD RATING REQUIREMENTS

The legally allowable gross vehicle mass and dimensions are given in the Vehicle Regulations, under the *Highway Traffic Act*, which can be accessed on the Government of Newfoundland Labrador website on the *Overweight and Over Dimensional Special Permits* page ([Overweight and Over Dimensional Special Permits - Digital Government and Service NL](#)). This page also provides a link to apply for a special permit to operate vehicles not in conformance with the weights and dimensions set out in the regulation.

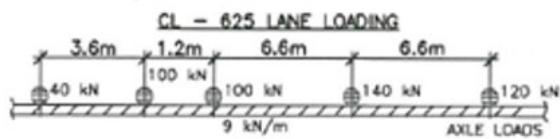
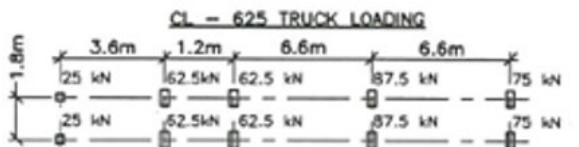
Oversize Permits are required for a vehicle that exceeds either an overall width of 4.27 metres, an overall height of 4.5 metres or a length with overhangs of front overhang of 3.1 metres and rear overhang of 5.5 metres and an overall length of 30 metres.

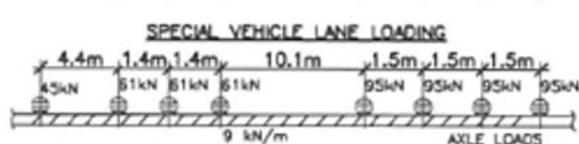
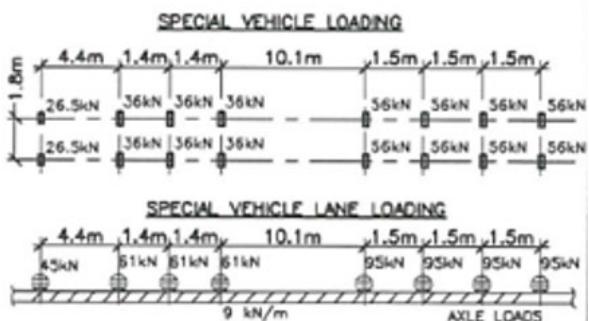
PROJECT NUJIO'QONIK: UPDATED TRANSPORTATION IMPACT STUDY AND TRAFFIC MANAGEMENT PLAN

Over-mass/Oversize Permits are issued for vehicles that exceed the axle group or gross masses prescribed under the Act. Maximum mass of 64,000 kg while the axle weight, axle spacing, tire sizes and number of tires are also reviewed and may result in an excessive overweight permit being required. The maximum mass permitted corresponds closely to the design vehicle used in the province and prescribed in the *Canadian Highway Bridge Design Code* (CSA S6:19). This is the CL-625-ONT truck with axle loads as illustrated in Figure 4.7. It has an overall gross weight of 625 kilonewtons (63,710 kg) and interaxle spacings and axle groupings less than what is legally allowed, for conservatism and safety.

NLDTI's Design Branch review Over-mass/Oversize Permit applications and determine if current infrastructure can accommodate the vehicles. The Branch evaluates the truck loads against available load ratings (or structural evaluation) or against the design vehicle at the time of construction. To help evaluate the likelihood of Over-mass permits being allowed along the proposed route, a list of bridge structures (bridges, retaining walls and culverts over 3 m in diameter) has been assembled by Stantec and is presented in Table 2.2. The provided information is available in the bridge database system of the province. The location of the structures, along with the conflicting movement intersections, is shown on a map of the proposed route in Figure 2.1.

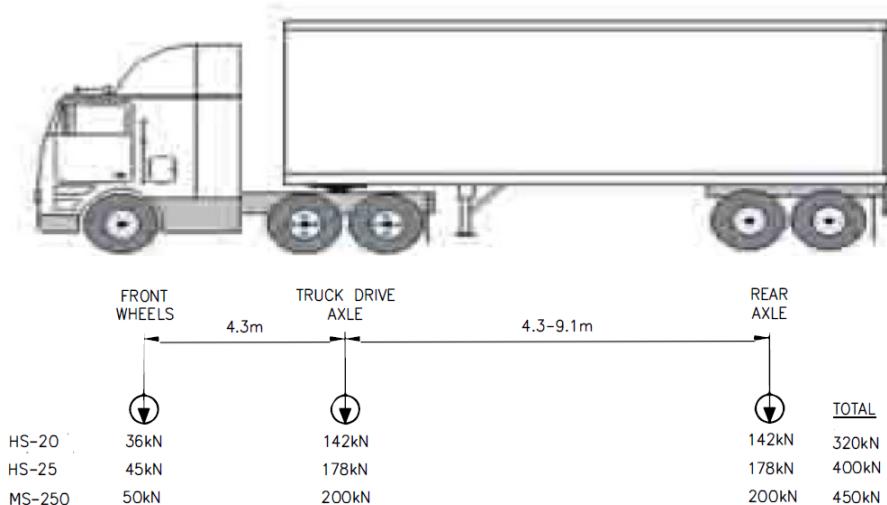
As noted in the bridge list in Table 2.2, the year of construction of the major structures range between 1955 and 2021 with most dating from the 1970's. Of the 29 structures along the route, five have been evaluated to the CL-625-ONT vehicle in accordance with section 14 of the *Canadian Highway Bridge Design Code*. Once the final routing is accepted and with the owner's approval, it is recommended that structural evaluations for the project transport loads be completed.



Figure 4-16 shows the CL-625 design load and the Newfoundland Special Heavy Truck live load.



PROJECT NUJIO'QONIK: UPDATED TRANSPORTATION IMPACT STUDY AND TRAFFIC MANAGEMENT PLAN

2. DESIGN LIVE LOADS:

a. CL-625



b. NLDTI SPECIAL VEHICLE

Figure 4.16 CL-625 design load and the Newfoundland Special Heavy Truck live load

In stakeholder discussions with the NLDTI Design Branch, they have stated that vehicle configurations can be submitted to the Permits office for pre-approval. They have also stated that for overlength vehicles, a comprehensive Traffic Management Plan including vehicle configuration approval or completed load evaluation calculations, if deemed necessary, shall also be submitted to NLDTI.

Figure 4.17 HS-20, HS-25 and MS-250 Truck Loadings

5.0 CONCLUSIONS AND RECOMMENDATIONS

Once the equipment and transporter vehicles have been finalized for all delivery components, WEGH2 will proceed with the following next steps.

1. A comprehensive Traffic Management Plan to provide detailed information on the proposed routes, schedule, component & equipment dimensions and weights, traffic controls & private escorts, structures, overhead obstructions, significant turns including communication protocols, emergency vehicles plans, breakdown plans and environmental constraints.
2. Detailed load rating assessments and calculations to be conducted on the structures and large diameter culverts identified in this report.
3. Permit applications to be completed and submitted to proper authorities.
4. Detailed route analysis (horizontal and vertical) to be completed:
 - a. Horizontal clearance: provide recommendations to upgrade the road to permit the transporter vehicle to pass. Include clearing, roadway and shoulder widening, traffic control (temporary lane closures, flaggers, etc.).
 - b. Vertical clearances: provide recommendations on any potential challenges including overpass/underpass clearances and utility line clearances.
5. Early confirmation of equipment and transporter vehicle dimensions and loadings to allow adequate time to conduct structural load ratings and permit applications.
6. Early coordination with Newfoundland Power and NL Hydro on the requirements of temporary relocation of hydro poles and overhead wires.
7. Any shallow buried small diameter culverts that would not be included as part of the bridge inventory (< 3 m dia.) should be assessed prior transport of WTG components and equipment.
8. Among all phases of the Project, it is identified that the construction phase represents the worst-case scenario since oversized and overweight Project materials and equipment will be transported to the site during the construction period.
9. Components for the construction of hydrogen/ammonia plant will be transported from the laydown areas at the Port of Stephenville to the adjacent construction site using the road network and Harbour Drive, which is also used for delivery of oversized and overweight Project materials and equipment.
10. On average, 6 daily round trips will be made to deliver overweight and oversized equipment from barging stations / ports to wind farm sites and 30 round trips will be made to deliver other construction materials from Port of Stephenville to wind farms per day.
11. When shipping the turbine components, the transport vehicles will need to cross the public road and/or make turns when travelling between barging stations and wind farm sites. Up to 5 minutes are needed to allow vehicles to cross. Two traffic controller persons are needed for each intersection.
12. When shipping the turbine components to Area 4, the travelling speed of the transport vehicle is much lower than the posted speed. It is recommended to have escort vehicles to warn the traveling public and to schedule the delivery to avoid the ferry traffics between Stephenville and Port aux Basques.

PROJECT NUJIO'QONIK: UPDATED TRANSPORTATION IMPACT STUDY AND TRAFFIC MANAGEMENT PLAN

13. In 2024, a structural assessment of the Main Gut Bridge was conducted, confirming its capability to bear the load of overweight components.
14. In terms of construction-related vehicles during the construction season, the impact to current traffic operation is low.

6.0 REFERENCES

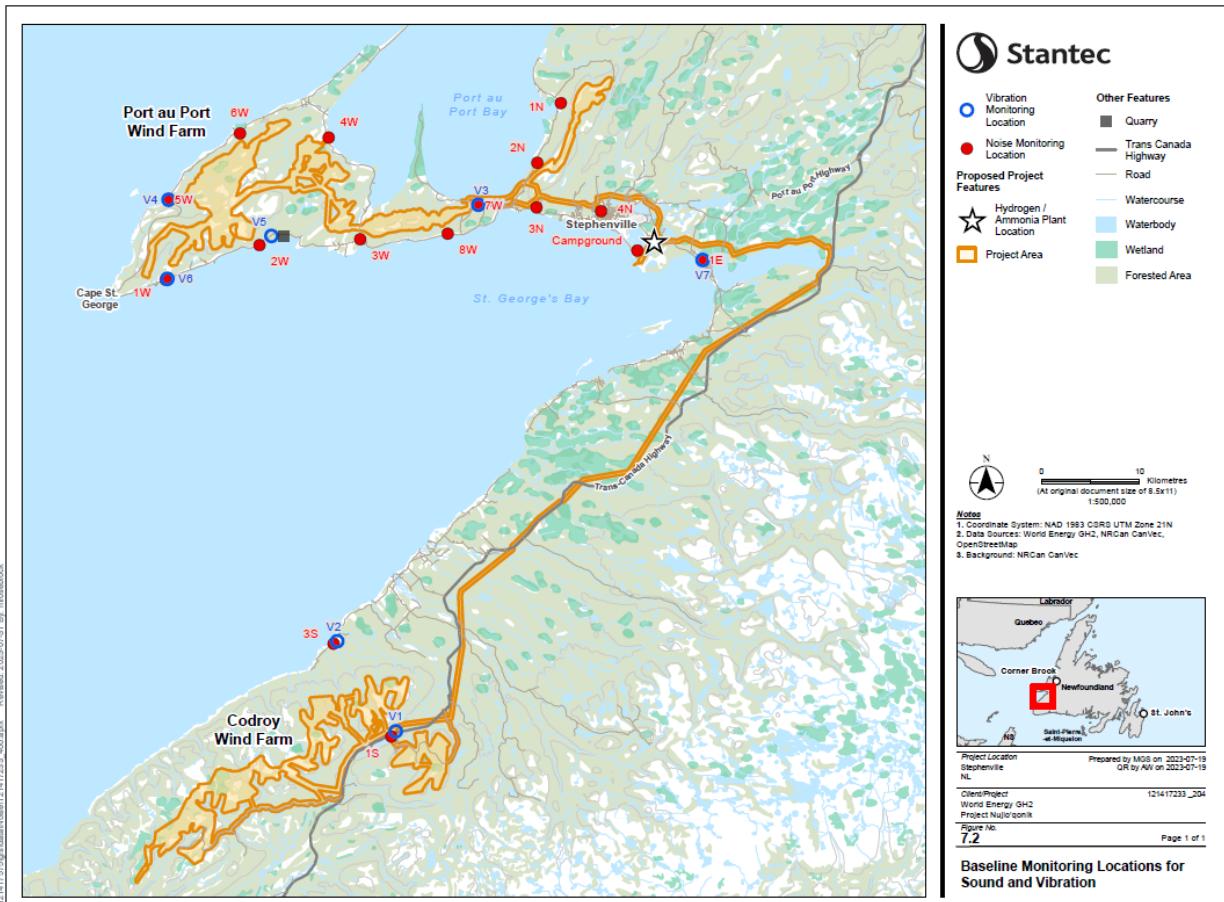
Marine Atlantic. 2024. Passenger Ferry Schedule. Available online at:

[Nova Scotia & Newfoundland Ferry Schedule | Marine Atlantic](https://www.marineatlantic.com/travel/passenger-ferry-schedule)

Transportation Research Board. 2000. Highway Capacity Manual 2000. Prepared for the National Research Board. Available online at:

https://sjnavarro.files.wordpress.com/2008/08/highway_capacital_manual.pdf

**PROJECT NUJIO'QONIK: UPDATED TRANSPORTATION IMPACT STUDY AND TRAFFIC
MANAGEMENT PLAN**


APPENDIX A
Traffic Data

MANUAL COUNT # LOCATION	LEG DESCRIPTION	2013 LEG AADT	2013 CARS AADT	2013 P/V AADT	2013 ST AADT	2013 TT AADT	% COMMERCIAL VEHICLES
TCH-DIST.4							
1-420 TCH.AT RTE.430 DEER LAKE TO ST.ANTHONY	A. CORNER BROOK B. DEER LAKE C. GRAND FALLS D. ST.ANTHONY	5416 4100 3519 3837	2495 1543 2815 2048	1506 1402 145 1473	598 847 131 235	818 309 429 81	26.14 28.18 15.91 8.24
1-422 TCH.AT NICHOLSVILLE OVERPASS AND DEER LAKE	A. CORNER BROOK B. DEER LAKE C. GRAND FALLS D. NICHOLSVILLE	3803 7621 5093 6136	2488 4369 3926 3265	621 2234 507 2087	188 724 199 615	505 294 461 168	18.24 13.36 12.95 12.76
TCH.AT ST. JUDES EAST INTERCHANGE WITH ACCESS TO DEER LAKE	A. CORNER BROOK B. DEER LAKE C. GRAND FALLS D. ST JUDES	4529 1276 3986 664	2206 1196 1869 435	1453 40 1462 74	340 18 263 74	530 22 393 80	19.22 3.07 16.45 23.30
TCH.AT ST. JUDES WEST INTERCHANGE ACCESS	A. GRAND FALLS B. ST JUDES C. CORNER BROOK	4483 120 4680	2733 70 2578	816 41 1374	250 9 225	685 0 503	20.85 7.81 15.57
TCH.AT PASADENA EAST INTERCHANGE	A. DEER LAKE B. SERVICE RD & ROD & GUN CLUB C. CORNER BRK. D. PASADENA	5149 209 8070 1114	3537 192 6129 762	924 10 831 297	252 5 410 40	437 3 700 16	13.37 3.54 13.75 4.98
1-430 TCH.AT SOUTH BRK.	A. DEER LAKE B. SOUTH BRK. (BOOM SIDING) C. CORNER BRK. D. PASADENA	8544 92 12770 3010	6489 89 10544 2798	880 3 1195 160	434 0 456 38	741 0 575 15	13.75 0.00 8.07 1.76
TCH.AT RAPID POND INTERCHANGE	A. DEER LAKE B. BOOM SIDING C. CORNER BRK. D. LITTLE RAPIDS	12770 565 12621 115	10544 552 9627 104	1195 5 1893 3	456 7 483 5	575 2 617 3	8.07 1.50 8.72 6.56
TCH.AT LITTLE RAPIDS INTERCHANGE	A. DEER LAKE C. CORNER BRK. D. LITTLE RAPIDS	12960 13356 135	9886 10243 59	1944 1500 50	496 555 22	634 1058 5	8.72 12.08 19.59
TCH.AT HUMBER VILLAGE INTERCHANGE	A. DEER LAKE C. CORNER BRK. D. LITTLE RAPIDS	13007 13771 285	9975 10630 272	1461 1011 6	540 606 5	1031 1525 3	12.08 15.47 2.64
1-435 TCH.AT STEADY BRK. BRIDGE	A. DEER LAKE B. STEADY BRK. C. CORNER BRK. D. MARBLE MTN.	12963 1235 14345 4320	9670 1114 11079 2020	1301 73 1054 590	650 26 710 342	1341 21 1501 590	15.36 3.82 15.41 21.58
1-440 TCH.AT R440 HUMBER RD/ RIVERSIDE DRIVE	A. DEER LAKE B. RIVERSIDE DRIVE C. PORT AUX BASQUE	13972 2595 11196	10791 2116 9250	1027 132 818	691 73 382	1462 274 746	15.41 13.38 10.07
TCH.AT RTE. LEWIN PARKWAY	A. DEER LAKE B. LEWIN PARKWAY C. PORT AUX BASQUE	11616 6978 5921	9598 4274 4557	848 1910 600	397 434 280	774 360 485	10.07 11.38 12.91
1-445 TCH.AT MASSEY DRIVE IN CORNER BROOK	A. DEER LAKE B. CORNER BROOK C. PORT AUX BASQUE D. MASSEY DRIVE	6927 6268 3871 4734	5332 5623 2992 2415	701 540 420 1506	327 73 223 616	567 32 235 197	12.91 1.68 11.85 17.18
	A. DEER LAKE	3216	1749	679	315	472	24.50

MANUAL COUNT # LOCATION	LEG DESCRIPTION	2013 LEG AADT	2013 CARS AADT	2013 P/V AADT	2013 ST AADT	2013 TT AADT	% COMMERCIAL VEHICLES
TCH-DIST.4							
TCH.AT RTE. WATSONS POND INTERCH.	B.ROUTE 450 C. PORT AUX BASQUE	3056 3202	1535 2451	608 368	362 162	551 222	29.89 11.98
1-455 TCH.AT RTE.402 TO GALLANTS	A. CORNER BRK. B. GALLANTS C. CHANNEL-P.A.B.	2772 141 2869	1778 74 2155	524 47 361	174 17 126	297 3 227	16.98 14.20 12.29
1-457 TCH.AT RTE.460 TO STEPHENVILLE	A. CORNER BRK. B. STEPHENVILLE C. CHANNEL-P.A.B.	2640 1273 1298	1501 1190 554	500 50 260	184 27 166	455 6 318	24.21 2.62 37.29
1-460 TCH.AT RTE.480 TO BURGEO	A. CHANNEL-P.A.B. B. BURGEO C. CORNER BRK.	1279 294 1282	788 208 522	220 62 376	100 12 143	171 12 241	21.19 8.21 29.92
1-462 TCH.AT RTE.490 TO STEPHENVILLE	A. CORNER BRK. B. STEPHENVILLE C. CHANNEL-P.A.B.	1537 1079 2166	817 803 848	285 138 679	178 62 266	257 76 373	28.32 12.82 29.51
1-463 TCH.AT RTE.461 TO ST.GEORGE'S	A. CORNER BRK. B. ST.GEORGE'S C. CHANNEL-P.A.B.	4764 939 5231	2555 474 2234	353 162 471	541 108 470	1315 196 2055	38.97 32.35 48.27
1-465 TCH.AT RTE.403 TO FLAT BAY	A. CORNER BRK. B. FLAT BAY C. CHANNEL-P.A.B.	2039 333 1737	803 293 807	697 28 446	176 8 152	364 4 332	26.46 3.61 27.86
1-469 TCH.AT RTE.404 TO ROBINSONS	A. CORNER BRK. B. ROBINSONS C. CHANNEL-P.A.B.	1619 338 1144	679 263 633	335 59 184	186 11 90	420 6 238	37.39 4.92 28.64
1-470 TCH.AT RTE.404 TO JEFFREY'S	A. CORNER BRK. B. JEFFREY'S C. CHANNEL-P.A.B.	1244 194 1295	676 177 785	206 9 179	124 8 120	238 1 211	29.13 4.49 25.55
TCH.AT RTE.405	A. CORNER BRK. B. ST. DAVIDS C. CHANNEL-P.A.B.	1173 218 908	945 202 537	103 7 159	48 5 70	77 4 142	10.62 4.15 23.38
1-480A TCH.AT SOUTH BRANCH ROAD	A. CORNER BRK. B. SOUTH BRANCH C. CHANNEL-P.A.B.	1530 191 1341	1172 72 581	140 70 355	82 36 150	136 13 255	14.26 25.96 30.22
1-480B TCH.AT SOUTH BRANCH ROAD (WEST ENTRANCE)	A. CORNER BRK. B. SOUTH BRANCH C. CHANNEL-P.A.B.	1084 328 1235	720 265 775	167 36 217	94 16 96	103 11 147	18.17 8.23 19.64

MANUAL COUNT # LOCATION	LEG DESCRIPTION	2013 LEG AADT	2013 CARS AADT	2013 P/V AADT	2013 ST AADT	2013 TT AADT	% COMMERCIAL VEHICLES
TCH-DIST.4							
			(Passenger Cars)	(Pickups & Vans)	(Single Unit Trucks)	(Tractor Trailers & Buses)	
1-484 TCH.AT GRAND CODROY ROAD	A. CORNER BRK. B. GRAND CODROY C. CHANNEL-P.A.B. D. BENOIT SIDING	1443 394 1781 394	977 166 1085 166	207 116 357 116	91 43 132 43	167 69 206 69	17.93 28.45 18.99 28.45
1-485 TCH.AT RTE.406 TO UPPER FERRY & DOYLES	A. CORNER BRK. B. UPPER FERRY C. CHANNEL-P.A.B. D. DOYLES	1691 1074 2395 186	1310 982 1229 117	143 43 664 42	102 27 253 20	137 21 249 6	14.11 4.48 20.96 14.23
1-486 TCH.AT RTE.407 TO ST.ANDREW'S	A. CORNER BRK. B. ST.ANDREW'S C. CHANNEL-P.A.B.	2106 779 2063	1655 695 1291	181 40 416	104 24 143	166 20 213	12.80 5.65 17.24
1-490 TCH.AT RTE.408 EAST ENTRANCE	A. CORNER BRK. B. RTE.408 EAST C. CHANNEL-P.A.B.	2224 698 2399	1795 384 1750	200 122 328	94 51 123	134 141 198	10.28 27.47 13.39
1-491 TCH.AT RTE.408 WEST ENTRANCE	A. CORNER BRK. B. RTE.408 WEST C. CHANNEL-P.A.B.	2799 60 2930	2194 54 2030	285 4 541	117 1 169	203 1 190	11.43 3.49 12.26
1-495 TCH.AT GRAND BAY EAST ROAD	A. CORNER BRK. C. GRAND BAY EAST(error?) D. CHANNEL-P.A.B.	2107 5175 1809	1668 4328 1142	173 492 299	110 174 137	156 181 231	12.63 6.86 20.33
1-496 TCH.AT GRAND BAY WEST ROAD	A. CORNER BRK. B. GRAND BAY WEST C. CHANNEL-P.A.B.	2888 1576 3270	2221 1190 2820	307 184 193	150 96 89	209 106 168	12.43 12.83 7.87
1-497 TCH.AT RTE.470 TO ROSE BLANCHE	A. FERRY B. ROSE BLANCHE C. TCH East to Corner Brook D. CHANNEL-P.A.B.	1356 814 1487 688	954 787 925 557	164 21 247 48	87 6 119 46	151 0 198 37	17.58 0.75 21.27 11.96
TCH.AT MAIN STREET PAB TO PORT AUX BASQUES	A. TCH EAST B. MAIN STREET PAB C. TCH WEST	1400 6811 1689	1105 3667 1622	190 479 44	53 532 158	52 2133 7	7.47 39.12 9.80
RTE.430							
430-92 INTERSECTION OLD RD. TO PORT AU CHOIX	A. ST.ANTHONY B. PORT AU CHOIX C. DEER LAKE	973 1110 1422	850 916 1260	58 134 92	29 29 35	37 31 35	6.70 5.44 4.92
430-120 INTERSECTION ST.BARBE ROAD	A. ST.ANTHONY B. ST.BARBE C. DEER LAKE	995 995 995	809 809 809	94 94 94	42 42 42	49 49 49	9.21 9.21 9.21
INTERSECTION RTE.430-14- ROCKY HR. NORT	A. ST.ANTHONY B. ROCKY HR. C. DEER LAKE	1979 1230 2446	1675 1168 1533	197 41 683	55 20 123	51 0 106	5.38 1.61 9.36
INTERSECTION RTE.432- RODDICKTON	A. ST.ANTHONY B. RODDICKTON C. DEER LAKE	1074 318 1609	896 271 933	45 23 101	29 17 150	103 8 425	12.31 7.67 35.74
RTE.461							
INTERSECTION RTE.461- Stephenville.	A. STEPHENVILLE B. Route 461 C. TCH	2615 1584 1708	2415 1517 1369	111 40 85	36 19 58	53 8 196	3.42 1.75 14.89

MANUAL COUNT # LOCATION	LEG DESCRIPTION	2013 LEG AADT	2013 CARS AADT	2013 P/V AADT	2013 ST AADT	2013 TT AADT	% COMMERCIAL VEHICLES
TCH-DIST.4				(Passenger Cars)	(Pickups & Vans)	(Single Unit Trucks)	(Tractor Trailers & Buses)
RTE.460- Stephenville - Barswalos	A. Boswarlos B. Route 460 C. Stephenville	8169 2566 1683	4630 2170 906	1317 188 108	826 81 150	1395 126 519	27.19 8.08 39.76
RTE.490- Stephenville Crossing near Seal Cove	A. Stephenville Crossing B. TCH C. Stephenville	1154 3858 2789	426 3197 1940	568 382 495	134 148 204	25 131 150	13.80 7.24 12.69

Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and completeness of the data.

Location E1 - 25/05/2023 2:00 – 3:00 pm

Direction SOUTH: Cars:49 – LT:0 – HT:1

Direction NORTH: Cars:45 – LT:1; HT:1

Total: 97

Between locations 2W and 3W near the quarry – 19/05/2023 10:30-11:30am

Direction NORTH: Cars: 30; LT: 0; HT: 0

Direction SOUTH: Cars: 14; LT: 1; HT: 1

Total Count: 46

Location 6W - 05/16/2023 12-1pm

Direction SOUTH: Heavy Trucks:0; Light Trucks:0; Cars: 12

Direction NORTH: Heavy Trucks:0; Light Trucks:1; Cars:16

Total Count: 29

Location 4W - 22/05/2023 – Unknown time (my guess is 3-4pm)

Direction SOUTH: Cars:85 - LT:1 - HT:3

Direction NORTH: Cars:71 – LT:0 – HT:9

Total: 169