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Abstract

This thesis investigated the use of remotely sensed snow information to help improve
flood forecasting in western Newfoundland’s Humber River Basin. Flood forecasting on
the Humber River is important because of the large population settlements within the
Humber Valley. In this research, two types of remotely sensed snow data were
considered for analysis: (1) snow cover (or snow extent) and (2) snow water equivalent
(SWE). The majority of this thesis focuses on the remotely sensed snow cover data.
Moderate Resolution Imaging Spectroradiometer (MODIS) Terra snow cover images
were acquired over the Humber Valley watershed throughout the snowmelt period, from
March to June, for the years 2000 to 2009. MODIS is an optical sensor on NASA’s
(National Aeronautics and Space Administration) Earth Observing System (EOS) Terra
and Aqua satellites. Its daily temporal data are advantageous and the data are free and
easily accessible. Daily snow cover data were extracted from the National Snow and Ice
Data Center (NSIDC) daily snow product, specifically MOD10A1: a product derived
from MODIS data, using a custom EASI script run in PCI Geomatica. PCI Geomatica is
a robust remote sensing and image processing software. One major obstacle, regarding
the acquisition of MODIS imagery over the Humber Valley watershed, is the presence of
over 50% cloud cover for 80% of the days on average from March to June every year.
This was a concern for data collection: affecting the sample size of acquired data and the
accuracy of the snow cover data. When cloud cover is high there is a greater chance that

it may be misclassified as snow and/or snow is misclassified as cloud cover. For this



reason, a cloud-cover threshold was determined. The Rango-Martinec snowmelt runoff
model, a widely used degree-day model which incorporates snow cover data as a direct
input, was evaluated. It was found that the next day’s flow is highly dependent on the
previous day’s flow and less dependent on the meteorological data: rainfall, snow cover,
and temperature. The results from the snowmelt runoff model using the snow cover data
provided very good final Nash-Sutcliffe coefficients of 0.85 for the calibration stage and
0.81 for the validation stage, but a consistent one-day lag of the modeled flow values
was also observed. Although these results were not superior to currently employed flood
forecasting models for the Upper Humber (because of a one-day lag in the modeled
flows), the methodology developed herein may be useful for other river basins in NL
where the flows are dominated by snowmelt during the spring such as the Exploits River
Basin located in central NL. Remotely sensed snow water equivalent (SWE) data
obtained from an advanced microwave scanning radiometer (AMSR-E), aboard the Aqua
satellite, was also investigated for daily flow modeling applications. SWE often provide a
better estimate of snowmelt than snow cover but this data had several disadvantages in
the Humber River Basin. The major obstacles included large spatial resolution (25 km),
data inaccuracy for wet snow, boreal forest, mountainous regions, and time step
irregularities. Extremely large variances in the SWE data rendered the information
inaccurate and ineffective for streamflow forecasting on Newfoundland and Labrador’s
Humber River. This research makes significant contributions to the field of hydrology
providing a valuable methodology in adapting remotely sensed snow data to daily flow

simulation and will be helpful to local authorities.
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- Chapter 1 -

Introduction

1.1 Purpose

The aim of this research project is to determine the role of remotely sensed snow data in
daily flow modeling on the Humber River, Newfoundland and Labrador, using the

Rango-Martinec snowmelt runoff model.

1.2 Overview

Daily flow predictions are required for forecasting floods. Rain-runoff models are used to
forecast flow rates and water levels using real-time or periodic rainfall and discharge
data. These predictions can range from hours to days ahead. There are several rationales
on flood forecasting. The main reason is to implement flood control and mitigation; this
includes protection of settlements through proper and timely management and warning
protocols. Other reasons for flood forecasting are to control reservoir levels and handle
water volumes for appropriate hydroelectric power production year-round. To be specific,
operators of large reservoirs would be able to plan for expected inflows and therefore

maximize the hydropower generation from the reservoir (Bettwy 2004).



The level of importance of snowmelt in flood generation depends on the region within
Canada. Generally, the larger the basin, the more the snowmelt runoff will dominate over
rainfall runoff contributions (Watt 1989). According to the Canadian Flood Guide of
1993, the four main causes of flooding in Newfoundland are (1) rainfall alone, (2) rainfall
plus snowmelt, (3) tidal effects (in some coastal areas), and (4) ice jamming. For the
Humber River Basin, flood forecasting is of great significance because of the large
settlement of people in and around the area, a growing population of over 30,000
(Statistics Canada 2006). The Deer Lake hydropower generating system is also affected
by the predicted flow rates. Currently, the provincial government of Newfoundland and
Labrador is not including any sort of snow cover or snow water equivalent data into its
flood forecasting model. In the past, however, snowmelt has been assessed by the Water
Resources Management Division (WRMD) of the Department of Environmental and
Conservation of Newfoundland and Labrador Provincial Government, using the
deterministic model: Streamflow Synthesis and Reservoir Regulation (SSARR) model.
The WRMD halted the operation of this model because, over time, the SSARR model
became inaccurate in its flow forecasts: overestimating the amount of snowmelt in the

spring (Cai 2009).

1.3 The Study Area
The Humber River Basin is located in western Newfoundland, Canada, shown in Figure
1.1. It is approximately at latitude and longitude coordinates 49° N, -58°E. It is the

second largest river system on the island with a drainage area of over 8,000 km? Its outlet



is located in the Bay of Islands, close to the Humber Village Bridge hydrometric station,
Figure 1.2, flowing into the Atlantic Ocean. Over half of its drainage area is regulated by

the Deer Lake Power Company (DLPC) for hydroelectric power generation.
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Figure 1.1: Map of Canada and the Island of Newfoundland

The basin’s climate, during the winter and early spring, is snowy and rainy with average
temperatures ranging from -20 °C to 0 °C. The Humber River Basin can experience
freezing rain when temperatures hover around 0 °C and it frequently endures average

wind speeds of 20 km/h. The region is categorized as dense forest with canopy cover



greater than 75%. It contains Black Spruce (Picea mariana) and is located in Canada’s
boreal forest (Water Resources Management Division 2009). Compared to adjacent
prairie and tundra areas, the coniferous boreal forest experiences a great deal more snow
accumulation and delayed snowmelt, attributable to the forest canopy coverage (Seidel

and Martinec 2004).

This watershed is divided into two parts, based on elevation and location. The Upper
Humber is smaller in size but higher in elevation, located in the northern, mountainous
area of the basin. The Lower Humber makes up the remainder, southern part of the basin
which includes Grand Lake, Deer Lake, and the Deer Lake power generating station. The
average elevation in the Lower Humber is approximately 100 m, whereas the elevation in
the Upper Humber ranges from 600 m to 800 m. The high elevation is one of the major
reasons for almost 100% snow cover over the Upper Humber from October to April (Cai

2009).

The focus of this research assesses the use of remote sensing of snow distribution to
improve flood forecasting for the Upper Humber River basin above Black Brook, as
shown in Figure 1.2 (highlighted and shaded in red). The yellow outline, in Figure 1.2,
delineates the entire Greater Humber watershed with its outlet into the Atlantic Ocean
located close to the Humber Village Bridge station. The hydrometric stations are shown

with black dots and labelled by their unique station names (i.e. 02YLO008). The



hydrometric stations are the locations where hourly water levels are recorded and flow

rates are derived from stage-discharge curves.
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Figure 1.2: Upper Humber River above Black Brook (Water Resources Management
Division 2009)

The Upper Humber above Black Brook region was chosen as a study area for several
reasons. The main reason was to monitor the flows in this northern part of the basin
because it retains its snow cover longer than all other areas of the watershed. The
completion of the seasonal snowmelt is often followed by increased flow rates. This
increase in water volume sometimes leads to flooding in the Humber River. The
occurrence of this potential flooding is often unexpected in the Lower Humber, as the
snow in the Lower Humber melts earlier than the snow in the Upper Humber.
Additionally, this region, as opposed to the western portion of the Humber River, does
not have any associated snow cover monitoring program (Water Resources Management
Division 2009). Lastly, the Upper Humber has natural, unregulated flows which provide

direct and comparable flows for modeling input.

1.4 Current Flood Forecasting Methods on the Humber River, NL

The Government of Newfoundland and Labrador has mandated the WRMD, Department
of Environment and Conservation, to provide flood forecasting services for the Humber
River, NL. Over the past 20 years the department has used various forecasting models.
The most recent model, still being used by the WRMD but only as an interim model, is
the dynamic regression model. This is a statistically based model. The flow is predicted
based on a linear time series of lagged flows and precipitation data. This model predicts

better than its predecessor, but it does not incorporate any snowmelt from the Upper



Humber region for flood predictions. Also, the dynamic regression model, being a simple

linear regression model, does not capture any nonlinear hydrological effects (Cai 2009).

Over the past year, another model was developed and is being tested by the WRMD
alongside the dynamic regression model. This is an artificial neural network (ANN)
model developed by Haijie Cai, a Civil Engineering master’s student at Memorial
University of Newfoundland (MUN) (Cai 2009). An ANN, usually called a “neural
network” (NN), is a mathematical model which attempts to simulate the structure and/or
functional aspects of reality. In most cases, an ANN is an adaptive system that changes
its structure based on external or internal information that flows through the network
during the learning phase. It is a non-linear statistical data modeling tool, applicable in
many diverse fields of study, but in this case is used for hydrological modeling. Neural
networks (NN) are used to find patterns in data and simulate complex relationships

between inputs and outputs (Cai 2009).

Two types of ANN models were tested: general regression neural network (GRNN) and
back propagation neural network (BPNN). The models were tested for the snowmelt
period in 2009 at three locations on the Humber River: Black Brook Station (Upper
Humber), Reidville Station, and Humber Village Bridge (refer to Figure 1.2). Both
models were good predictors for the non-snow areas (Reidville and Humber Village

Bridge). Both models were still good predictors for the snowy area (Upper Humber Black



Brook), but the GRNN provided slightly better results than BPNN, with model efficiency

Nash-Sutcliffe coefficients of 0.82 and 0.80 respectively (Cai 2009).

It is no surprise that the WRMD is interested in improving and advancing this flood
forecasting service even further, given that the region of interest experiences heavy and
frequent snow falls, leading to expected large snowmelt volumes. Incorporating snow
data into the prediction model was the next logical step. When a river basin area remains
fully-covered throughout the forecasting period, the forecasts are accurate when based
solely on an index of the energy available for melting the snow (i.e., degree-day factor).
For the Upper Humber, however, during the spring period forecasts, the catchment
becomes partially to completely bare and assumably the snowmelt plays a significant role
in flow predictions. Incorporating the snowmelt information obtained from the remotely

sensed snow cover images can help predict more accurate flows (Maidment 1993).

This thesis integrates remotely sensed snow cover data into the Rango-Martinec
snowmelt runoff model (SRM) to investigate possible improvement of daily flow
modeling on the Upper Humber River. The Rango-Martinec SRM is one of the first and
still most widely used hydrologic models with satellite snow cover as a direct input
variable (Seidel and Martinec 2004). The use of remotely sensed snow water equivalent
(SWE) data is also explored in hopes of further improving the Humber River’s daily flow

modeling.



1.5 Research Objectives

The research objectives for this thesis are fourfold. The first three encompass the primary
objectives. The remaining one included as research progressed is considered a secondary
objective. They are:

1. To determine the most advantageous satellite snow data available with regard to
timeliness, quality, and cost. Also to determine how the snow data is obtained and
what type of snow data is available through various sensors onboard satellites.

2. To acquire satellite images of snow cover data and to manipulate, validate, and
manage this snow cover data through methods/processes such as geo-referencing
and metadata analysis. Also to implement a snow algorithm and automate data
extraction by running programming scripts.

3. To incorporate the remotely sensed snow cover data into the Rango-Martinec
snowmelt runoff model used to forecast daily flow rates in the Humber River
Basin. This includes the calibration of parameters using design of experiments
(DOE) and a validation phase to evaluate the model’s prediction accuracy.

4. To investigate and obtain remotely sensed snow water equivalent (SWE) data for
the possibility of further snowmelt analysis. If the data are deemed reliable, it is
likely to improve snowmelt estimates in terms of predicted total volume of water

and timing of snowmelt.



1.6 Thesis Outline

This first chapter provided a brief overview of the research to be presented in this thesis.
It also described the study area and one-day ahead flood forecasting models currently
being used by the WRMD on the Humber River Basin. Chapter two introduces remote
sensing of snow cover and provides in depth information on how the data were obtained,
validated, and manipulated. This manipulation transforms the data into a practicable
format for SRM model input. Snow cover depletion curves are also discussed and derived
from the satellite images. Chapter three continues to address the primary objectives, with
information on the snowmelt runoff model used in the daily flow modeling. In addition,
this chapter provides the methodology and results for the calibration and validation stages
in modeling on the Upper Humber River, NL. Chapter four addresses the secondary
objective, investigating and obtaining SWE data from remote sensing methods. This
chapter also explores the possibility of updating and improving the snowmelt runoff
model using new snowmelt data. Chapter five entails a summary of the results from this
research, a discussion on the methodologies developed in this thesis, and the potential
applications for this research. Chapter six concludes this thesis with a conclusion and
recommendations for further research; this final chapter is followed by references and

appendices.
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- Chapter 2 -

Remotely Sensed Snow Data

Remote sensing uses a real-time sensing or a recording device which is connected
wirelessly to a platform. The platform ideally would be a satellite but could also be an
aircraft or any object which does not physically touch the object being observed, such as
ground-based supports. Remote sensing allows real-time observation of the Earth’s
surface and/or the events at particular locations. This is useful in observing vast,
dangerous, and/or inaccessible areas. In Geographic Information Systems (GIS), remote
sensing is considered a primary data source. A primary data source is described as
obtaining data directly from the source without any type of mediator (Longley et al.

2005).

There are several types of sensors used in remote sensing: all of which provide unique
information about the Earth’s surface properties. For example, thermal sensors measure
changes in surface temperatures, multispectral scanners measure reflective solar radiation
and albedo to differentiate between snow and no snow, and microwave sensors measure
dielectric properties to determine moisture content for snow and soil. Remote sensing is
based on measuring components of the electromagnetic spectrum. Reflected or emitted

energy is measured from the Earth’s surface and a unique spectrum signal returns for a

11



specific Earth property that is being investigated. Certainly, the key feature in remote
sensing is that the sections that can be used within the electromagnetic spectrum are
limited by the properties of the Earth’s surface and/or landscape characteristics required

for analysis (Maidment 1993).

Remote sensing can provide significant data used to complement the conventional data.
This new direction allows for exciting expansions in hydrology; it can help hydrologists
undertake previously unsolvable problems such as exploring vast remote areas in a timely
manner (Maidment 1993). Its practical applications to aid in flood forecasting are fairly
new: practical because of the daily temporal data available via satellite. For this analysis,
remote sensing is specifically used to collect snow cover data for the Upper Humber
Basin. The flow diagram in Figure 2.1 illustrates how this data acquisition interconnects

with predicting flows in rivers.

12
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Figure 2.1: Flow Diagram Tying in Remote Sensing with Flood Forecasting
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2.1 Data Collection

Remotely sensed data are very useful in monitoring the progress of snowmelt and
quantifying the amount of snowmelt being added to spring runoff. Interest in remotely
sensed data collection was focused on snow cover data over the Humber River Basin.
The snow extent information was used as in indirect measure of snowmelt, given that
snow depth cannot normally be obtained directly from visual image retrieval (VIR)
imagery (Rees 2006). This section will describe how these data were obtained: mainly
choosing an appropriate sensor and sensor details, the format of the raw data, the

download process, and how the snow cover data are derived.

2.1.1 MODIS Sensor

MODIS (Moderate Resolution Imaging Spectroradiometer) is regarded as the optimal
source for snow cover data and was the remote sensor selected to capture the images over
the Humber River Basin. MODIS is an optical sensor aboard NASA’s Earth Observing
System (EOS) Terra and Aqua satellites. MODIS Terra images were used for this
application because their snow cover data was declared by NASA to be favoured over the
MODIS Aqua images (Riggs et al. 2006). The reliability for snow cover data extraction
was compromised on the MODIS Aqua sensor when band six, sensor detection required

for snow cover data acquisition, failed shortly after launch (Riggs et al. 2006).

The Terra satellite was launched in December 1999. The first views of Earth from

MODIS were in February 2000 and data acquisition began in March 2000. The Terra

14



satellite has a near-polar, sun-synchronous orbital period of 98.1 minutes. Its nominal
swath coverage is 2,330 km (across track), providing tile sizes of 1,200 km by 1,200 km,
and a spatial resolution of 500 m for bands three to seven (i.e. pixel size = 0.25 km?)
(Riggs et al. 2006). Terra orbits the Earth in which the location that it passes over and
collects only daytime data (sun-synchronous). Two main reasons MODIS Terra images
were chosen over other satellite images are (1) the daily temporal data are advantageous
and (2) the data are free and easily accessible. Some pertinent technical specifications of

MODIS are summarized in Table 2.1.

15



Table 2.1: Technical Specifications of MODIS (National Aeronautics and Space

Administration 1999)

Orbit: 704 km, 10:30 a.m. descending node (Terra) or 1:30 p.m.
ascending node (Aqua), sun-synchronous, near-polar,
circular

Scan Rate: 20.3 rpm, cross track

Swath Dimensions:

2330 km (cross track) by 10 km (along track at nadir)

Size:

10x16x1.0m

Weight:

228.7 kg

Data Rate:

10.6 Mbps (peak daytime); 6.1 Mbps (orbital average)

Spatial Resolution:

250 m (bands 1-2)
500 m (bands 3-7)
1000 m (bands 8-36)

Design Life: 6 years
Primary Use Band Bandwidth® | Spectral Required
Radiance” SNR®

Land/Cloud/Aerosols | 3 459-479 35.3 243
Properties 4 545-565 29.0 228

5 1230-1250 5.4 74

6 1628-1652 7.3 275

7 2105-2155 1.0 110

& Bandwidth is in nm

® Units for Spectral Radiance = W/m%/pm/sr.
 SNR = signal-to-noise ratio

Although the design life for MODIS was six years, it has been in orbit for about 10 years
now and continues to operate without any irreparable problems. The bands on MODIS
range from band 1 to band 36. For the purpose of this research on snow cover data, only
the sections with the bands of interest were provided in Table 2.1. Snow covered land,
snow covered ice on inland water, and fractional snow cover are all components that are

identified or computed from the MODIS snow cover algorithm (Riggs et al. 2006). Other

16




primary uses for the remaining MODIS bands range from phytoplankton biogeochemistry

to atmospheric water vapour (Seidel and Martinec 2004).

2.1.2 Raster Data

The remotely sensed MODIS data are stored in hierarchal data format (hdf); used to store
raster data. Raster is a grid-like format, as opposed to vector, which stores its data as lines
and polygons. In raster representation the area is divided into an array of rectangular
(usually square) cells. Each cell is assigned properties or attributes which describes all
geographic variations. The cells are sometimes called pixels (short for picture elements)

(Longley et al. 2005).

The default for remotely sensed data storage is raster format and the resolution is often
described by pixels. A pixel, by definition, is the smallest element in an image that can be
individually processed. The size of a pixel helps describe the resolution of an image. It is
also important to know that the information inside each cell is assumed to be
homogeneous and there is only one classification for each pixel. The pixel size of the
snow extent MODIS/Terra data is 500 m by 500 m or 0.25 km?, which translates into

approximately 1,880 pixels within the Upper Humber Basin above Black Brook region.

2.1.3 Data Download

The initial images rendered by MODIS can be considered unrefined or raw data, but the

National Snow and Ice Data Center (NSIDC) snow extent MOD10A1l product is

17



classified as pre-processed data. Although the MOD10A1 product is processed, these
images still need to be downloaded and clipped to a reasonable size in order to focus on
and assess the area of interest. The MODIS sensor is used to capture a variety of
products. The snow and ice product was downloaded from the NSIDC based in Boulder,
Colorado. The NSIDC provides various data source links where specifics can be chosen
for proper data download. The source chosen for this data download was the Warehouse
Inventory Search Tool (WIST), which was used to obtain the archived data of
MODIS/Terra images from 2000 to 2009 (National Aeronautics and Space

Administration WIST 2010).

WIST stores the entire archived data for MODIS/Terra, MODIS/Aqua, and many other
EOS (Earth Observation System) data from other instruments. WIST allows the user to
search by parameter, spatial sub-setting, and tile searching for select products. One
drawback of WIST is that the maximum download per order maxes out at 1000 granules
(The National Snow and Ice Data Center 2008). A data granule is the smallest
aggregation of data which is independently managed. The Humber River Basin is located
under one granule; a data granule consisted of a per day image of snow cover (National

Aeronautics and Space Administration WIST 2000).

The snow and ice product of specific interest was listed under cryosphere: MODIS/Terra

Snow Cover Daily L3 Global 500 m SIN Grid V005, primary data search. This infers a

download of the latest version of daily data with 500 m resolution in the gridded
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sinusoidal equal area map projection. A file-transfer-protocol (FTP) was used to obtain
the data. FTP is a means to exchange and manipulate files over a TCP/IP (Transmission
Control Protocol/ Internet Protocol) network, for example the internet. It is often accessed
by user-based passwords or anonymous user access. This method of downloading data is
used when large amounts of information are being transferred. In this case, the
MODIS/Terra snow and ice product was downloaded by FTP over the internet through
email authentication from WIST. See Appendix A for WIST screenshots providing the

sequence of steps to correct MODIS/Terra snow cover data download.

2.1.4 Re-Projection

It is important to know the projection of the downloaded data. Different projections
preserve various aspects of an image. There are conformal, equidistant, and equal area
projections. The choice of projection depends on the type of information required. For the
purpose of snow covered area, an equal area projection was desired. The sinusoidal
projection is an equal area projection and displays the proper areas equal to their
corresponding areas on a globe. They do, however, distort the image of the land masses,
but this is merely a visual drawback and does not affect this analysis (Longley et al.

2005).

Locations are specified using the UTM (Universal Transverse Mercator) coordinate

system. It divides the Earth into a grid with 60 longitudinal zones, each with a different

map projection: a specific secant transverse Mercator projection. The transverse Mercator
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projection is known for its ability to map sections of large north-south extents with minor
distortion. Each zone is divided into 20 latitude bands labelled by letters of the alphabet
from C to X (omitting the letters | and O, because of similarities to the numbers zero and
one) (Longley et al. 2005). Newfoundland’s Humber River Basin is located in zone 21U.
The data is collected from the cryosphere, which is the part of the Earth’s surface that is
covered in frozen water. The details of the data download are as follows: MODIS/Terra
snow cover daily L3 global 500 m SIN Grid VV005. V005 is the latest version of available
data and is the most advanced in pre-processing with a much improved method for
properly identifying and classifying snow and cloud (Riggs et al. 2006). The MODIS
snow and ice product was searched for on the NSIDC website and downloaded using FTP

Pull, which is an easy way for the user to copy files over the internet.

The MODIS data was downloaded for the 10 available years, from 2000 to 2009. The
product was downloaded for every year to monitor the snow cover over the Humber
River Basin, from October 1% to June 30", but data range for analysis was only used from
March 1% to June 30", to cover the period of snowmelt. Although Newfoundland and
Labrador can experience some snowmelt in October, November, and December,
quantifying the spring snowmelt was of primary concern for the WRMD because of
higher observed flow rates during that period. The images for MODIS Terra snow cover

only began in March 2000.
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2.2 Data Validation

Data validation is a step that is very important but often mistakenly regarded as
peripheral. This section will first discuss how the MODIS data were reviewed for
imperfections and errors in sensor readings through metadata and flagged data. Second,
the method of pixel classification for this data is clarified. Lastly, this section will explain

how the snow cover data accuracy was improved by setting a cloud-cover threshold.

2.2.1 Metadata

Metadata are essential when using data for an analysis and is commonly referred to as
‘data about data’. It is structured information provided along with the data itself to inform
users about its quality and applicability. Metadata includes information about the
currency (date), processing, projections, scale, resolution, source, and contact information
for further questions. Specifically, object-level metadata (OLM) provides crucial
documentation which describes the contents of a single dataset. OLM allows the user to
decide whether the data satisfy their requirements for analysis. It also provides
information about the data which allows the user to handle it efficiently and effectively

(Longley et al. 2005).

2.2.2 Flagged Data
Within the metadata file for each data set is a section for flagged data. The snow and ice
product was flagged in the metadata for a few of the days, over the 10 year data

collection period. The yellow flags described as “other quality”, indicate a failure in the

21



sensors “no surface reflectance input” from the quality assessment (QA) checks. These
data were removed and not used in the analysis. The QA provides an indication on the
quality of data. Unless the data are unusable or missing it is often determined to be of
good quality. When the majority of pixels covering the region of interest are classified as
either zero (missing data) or one (no decision), the data is also removed from analysis.
Missing data classification is self explanatory; this describes data that has been lost along
the way and termed missing. No decision data classification is determined when the data
are deemed unusable or when the sensor is unable to detect any reflectance’s relevant for
proper classification. The usable good quality data are input for the snow algorithm

(Riggs et al. 2006).

2.2.3 Pixel Differentiation

The process used to classify pixels can never be 100% accurate because land cover is
never homogeneous, at any level of detail. Regardless of the image resolution, there will
always be some variation within a pixel. There is a basic assumption that the information
within one pixel is the same throughout that given area. A mixed pixel or “mixel” is the
term used to express a pixel whose area is divided into more than one class, which can be
described as a transition zone. It is actually quite uncommon for a pixel to be completely

classified as mixel-free at any resolution (Longley et al. 2005).

There are two main techniques used to classify mixels. The more common technique is

to identify and assign the land class with the highest percent coverage within that pixel
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area. The other technique is to discover the land cover class identified at the center of the
pixel and assign that land cover class to the entire pixel (Longley et al. 2005).
MODIS/Terra pixels are classified by the first technique described: the land class with
the highest percent coverage. The MODIS ground resolution is not precise enough to be
able to pinpoint a center pixel classification. The general reflectance combination within
the ground resolution cell or pixel is determined and classified based on its most likely

category of classification (i.e. snow, lake ice, inland waters, no snow, cloud, and ocean).

2.2.4 Cloud Cover Threshold

The main snow mapping obstacle for MODIS, being an optical sensor, is cloud cover.
When cloud cover is high, there is a greater chance that it may be misclassified as snow
and/or snow is misclassified as cloud cover. Cloud cover can be misclassified as snow
and snow can be misclassified as cloud. Given that Newfoundland and Labrador is an
exceptionally cloudy province, the snow cover derived MODIS images of the Humber
River Basin can often be influenced when percent cloud cover over the basin is high. It
has been discerned, from the MODIS cloud cover data, that cloud cover over the Humber
River Basin is over 50% cloud cover for 80% of the days on average from March to June

every year for the past 10 years (2000 to 2009).

This snow and cloud misclassification problem persists in the snow algorithm. The

technical reasoning behind this misclassification is associated with parts of ice clouds

appearing yellow in MODIS bands one, four, and six color display (bands four and six
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being pertinent to snow classification). This error occurs when parts of the clouds are in
the shadows from other clouds. These arrangements lead to parts of the cloud not able to
be picked up as cloud when the cloud mask is generated because of different reflectance
levels. These missed clouds are then processed in the snow algorithm and often have
spectral features closer to “snow” than “not snow”. According to the most recent MODIS
Snow Products user guide, this problem is typically very small due to a great deal of

improvements having been recently implemented (Riggs et al. 2006).

As stated, the Humber River Basin experiences well above average cloud cover
compared to other areas of the world. This large portion of cloud cover was still a
concern for data collection, despite the MODIS Snow Products user guide reassurance.
This cloud cover was a concern because of possible affects on either the sample size of
acquired data or the accuracy of the snow cover data. It was therefore important to assess
and implement a cloud cover threshold to reduce the possibility of misclassified snow
and/or cloud. Although MODIS provided daily images, very few remained after the cloud

cover threshold was realized.

Snow depletion curves, plotting percent snow cover over time, were created to set the
cloud cover threshold. These were created for each cloud cover threshold being tested
and only included snow cover points with cloud cover less than or equal to the particular
specified cloud cover threshold limit. It was important to observe little change in the

rapidity and date of decline from curve to curve as the tested percent of acceptable cloud
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cover increased. These criteria are essential to avoid significantly altering the correctly
classified data. Table 2.2 summarizes the various cloud cover thresholds tested along
with the number of data points it provided, on average per year, over 10 years for the
snowmelt time periods. See Appendix B for plot comparisons of the data summarized in

Table 2.2.

Table 2.2: Percent Cloud Cover and Coinciding Number of Snow Cover Data Points

Cloud Cover (%) | Approx. Number of Snow Cover Change in Rapidity and
Data Points Date of Decline
5 ) -
10 7 Minimal change
20 10 Minimal change
30 13 Noticeable difference

It is crucial to find a good balance between cloud cover and number of snow cover data
points per year. Finding this balance is similar to choosing a filter size. On one side, the
cloud cover becomes too high and the number of snow cover data points increase, but the
accuracy of these points decreases because it may not be classifying the cloud and snow
properly. On the other side, as the cloud cover threshold decreases, the number of snow
cover data points diminishes rapidly. This affects the statistical integrity of the
assessment because as the number of data points decreases, more of the daily snow cover
must be interpolated (in other words more of the daily snow cover points must be

estimated). It is important to ensure that the data are independent and random; otherwise
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the data will not accurately portray reality. A cloud cover threshold of 20% was found to
provide a proper balance between number of data points and data validity. The 20%
cloud cover threshold was determined based on the plotted snow cover data sets over the
past 10 years (2000 to 2009). For flood forecasting in the future, this cloud cover
threshold should be re-assessed with appropriate snow cover and cloud cover data to

ensure accurate modeling.

2.3 Data Manipulation

The MODIS images downloaded from the NSIDC constitute pre-processed data. First,
this data is manipulated to derive the snow cover maps through radiometric and
geometric corrections, re-projections, and multispectral classification. Second, the robust
image processing program, PCI Geomatica version 10, is used to compile and calculate
percent snow cover, while the daily output files are handled in Microsoft Excel using a
Visual Basic (VB) program. Finally, snow cover depletion curves are derived based on a
specified cloud cover threshold which is set to eliminate possibly skewed and

misclassified snow cover data.

2.3.1 Deriving Snow Cover Maps
There are three steps which lead-up to the derivation of snow cover maps from remotely
sensed data:

1. pre-processing,

2. multispectral image classification, and
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3. integration of interpreted results.

2.3.1.1 Pre-Processing

Metadata is an important part of data processing as it explains where this data is from and
how they have been manipulated. There are two steps in pre-processing: radiometric and
geometric corrections. Radiometric correction is essential to compensate atmospheric
distortions. This provides a clearer visual of the Earth’s features and leads to a more
reliable and robust interpretation of the data. Geometric correction or geocoding is a
process in which all raw data is transformed in various ways to ensure that they all belong
to the same georeference system. The standard georeference system varies from country
to country (Seidel and Martinec 2004). This NSIDC pre-processing is efficient, making

the data available within days of capture.

2.3.1.2 Multispectral Image Classification

MODIS is an optical sensor. This means that it uses the visible and infrared spectrums to
generate images of the Earth’s surface. It does this by detecting solar radiation from
targets on the ground. These targets are differentiated by their spectral reflectance (Seidel
and Martinec 2004). See Figure 2.2 for a visual on the visible and infrared (IR) portions

of the electromagnetic spectrum with respect to the other parts of the spectrum.
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Figure 2.2: Electromagnetic Spectrum with Emphasis on the Visible and Infrared
Sections (Science Learn 2007)

Deriving snow cover maps from MODIS data is based on a method developed by NASA
(National Aeronautics and Space Administration) using the normalized difference snow
index (NDSI). This is the difference between IR reflectance of snow in visible and
shortwave wavelengths. Terra uses bands four and six for snow mapping. MODIS Aqua
band six (1.6 um) detectors failed after launch, leaving it only about 30% functional;
70% of the band six detectors became non-functional. This is why the snow cover data
are compromised. Aqua now uses MODIS band seven (2.1 um) for the NDSI calculations
(Riggs et al. 2006). The NDSI is not affected by the wide range of illumination settings
and it does not rely on the reflectance of a single band. (Seidel and Martinec 2004).The

NDSI calculations are as follows, see Equation [2.1].
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band 6—band4
band 6+band 4

[2.1] NDSI =

Where:

band 4 = green band reflectance; and
band 6 = shortwave IR reflectance.

The NDSI allows the differentiation between snow and many other land cover types by
observing the strong reflectance of snow in the visible bands (e.g. band four) and the

strong absorption of snow in shortwave IR (e.g. band six) (Abbott 2009).

To create a snow cover map from remotely sensed data, the NDSI technique is
implemented to identify and classify snow on a pixel-by-pixel basis. Other spectral
threshold tests are used in conjunction with the NDSI test to identify other types of land
cover. The NDSI method is useful for numerous reasons. The two principal reasons are:
(1) it is easier to detect snow and ice in the visible region because it is considerably more
reflective in the visible region than in the shortwave IR region; and (2) it can be
considered a great snow/cloud discriminator because the reflectance in the shortwave IR
region of most clouds remains high, while the reflectance of snow is low (Seidel and
Martinec 2004). There is, however, one type of cloud, which remains difficult for optical

sensors to differentiate from snow and that is the thin cirrus cloud (Rees 2006).
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The Humber River Basin is classified as having a dense forest canopy with over 75%
coverage with coniferous trees, specifically Black Spruce (Water Resources Management
Division 2009). Snow cover mapping is frequently hindered when a pixel is partially or
fully covered by dense forest cover (i.e. snow cover remains unnoticed). Snow that falls
on a coniferous tree canopy does not often remain there for the entire winter as it can
often disappear due to sublimation. The snow on the ground below, however, will most
likely remain unaccounted. Measuring reflectance specifically the NDSI and NDVI
(Normalized Difference Vegetation Index) together can often provide a strong signal
used to exploit and classify snow covered forests (Seidel and Martinec 2004). Still, for
the Upper Humber, the NDVI was not used in conjunction with the NDSI. Given that the
plotted conventional depletion curves showed no significant changes or abnormalities
throughout any of the 10 plotted snowmelt seasons, it is assumed that the snow mapping

is not greatly hindered by the dense forest canopy.

The snow cover algorithm screens each pixel for temperature, before a conclusive snow
decision is made from calculating the difference in bands ratio. This ensures that the
classification makes logical sense. Any pixel classified as snow with an estimated
temperature greater than 283 K (or 10°C) is changed to land. This extra step has proven
useful in reducing the occurrence of erroneous snow identification in some situations, but
often only along warm coastal regions with wide, sandy beaches. The proper location and
alignment of snowy coastlines in Canada have been problematic in the past, but

improvements have been realized when the land/water mask was implemented. This has
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reduced erroneous snow mapping along coastlines and coastal differences remain a minor

problem (Riggs et al. 2006).

The snow algorithm is approximately 93% to 100% accurate at mapping snow under
ideal illumination conditions (i.e. clear skies and several centimetres of snow on a smooth
surface). Ideal conditions are rare in any part of the world, and never the case in the
Humber Valley, NL regarding completely clear skies and a smooth surface, but the
snowy region often will accumulate several centimetres of snow over the winter season.
The NDSI has proven to be a robust indicator of snow when snow is present, although
patchy snow or thin snow cover on vegetated surfaces may be missed by the NDSI

(Riggs et al. 2006).

2.3.1.3 Integration of Interpreted Results

This third step in deriving the snow cover maps is used to manage and display results,
normally through use of a geographic information system (GIS). A GIS is a broad term
which encompasses a large range of applications. These applications commonly fulfill the
five M’s of GIS: mapping, measurement, monitoring, modeling, and management
(Longley et al. 2005). With technology advances, using technical tools for multispectral
image analysis and GIS’s for managing and storing large databases, processing remotely
sensed information is becoming less expensive. Furthermore, Earth Observation (EO)
data with practical time steps and ground resolution are becoming available in steadily

increasing numbers (Seidel and Martinec 2004).
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Before this step can be completed, the data should be assessed based on quality and any
uncertain data should be removed. The section on data validation addressed this process

which includes reviewing metadata files and assessing the flagged data.

2.3.2 PCI Geomatica — Post-Processing

Many steps are carried out to extract the desired snow cover information from the raw
satellite data. Snow cover analysis requires a number of steps to process the data from the
sensors. These sensors are unable to capture adequate information to classify the objects
in a single step. While there are many steps, the main idea is to develop an algorithm
used to extract the snow covered area over long periods of time. This is usually
accomplished by counting the number of snow covered units (SCUs) over the given area

(Seidel and Martinec 2004).

PCI Geomatica is a powerful integrated software system with many applications used for
remote sensing data and image processing. Geomatica FOCUS is an application used for
viewing, enhancing, and examining remotely sensed imagery. This application (version
10) was used for the analysis along with EASI modeling, which was applied within

FOCUS for processing the remotely sensed data using a written script.

For this thesis, the downloaded MODIS images were clipped to the area of interest and

assessed for percent snow cover over the Humber River Basin for all of its 12 sub-
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watersheds. The EASI snow algorithm was implemented and used for the extraction of
daily snow cover data. Each processed day was exported into an individual text file
containing information on the area/pixel count of particular classes: no snow, lake, cloud,
lake ice, and snow. Problem pixels were classified under missing data and no decision.
Each land cover classification is linked to a pixel number. Table 2.3 provides a legend of
significant pixels and land classification for proper snow cover mapping of western
Newfoundland’s Humber River catchment area.

Table 2.3: Legend for Land Classifications and Corresponding Pixel Identification
Numbers (Riggs et al. 2006)

Pixel Land Classification

0 | Missing Data

1 No Decision

25 | No Snow
37 | Lake

39 | Ocean

50 | Cloud
100 | Lake Ice
200 | Snow

254 | Detector Saturated

255 | Fill (data used to fill gaps in the swatch)

Ocean identified pixels are not analyzed for snow. Inland waters, lakes, and rivers,
however, are assessed for possible snow covered ice conditions. A snow/no-snow

decision is made on the MODIS swath data if all of the following three criteria are met:
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(1) data are classified as either land or inland water, (2) data are captured in daylight, and
(3) cloud mask is applied (Riggs et al. 2006). Figure 2.3 provides MODIS/Terra
processed data displaying various land classifications, specifically snow cover. In Figure
2.3, the Upper Humber watershed is outlined in red, snow and lake ice indicated by

white, clouds by grey, and ocean and inland lakes by blue.

Figure 2.3: Processed MODIS/Terra Snow Covered Area for the Upper Humber Basin,

NL

The AREAREPORT program in PCI Geomatica version 10 is used to generate a snow
area report from the MODIS/Terra data set. The two inputs required to run this algorithm
are an input raster (MODIS/Terra images) and a bitmap mask (watershed boundaries).

The reporting units were set to km?. Figure 2.4 is an example of the AREAREPORT text
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file output for the Upper Humber above Black Brook sub-watershed on 2002-102 (this
implies the date the information was obtained: year 2002 and julian date 102, being April

12, the 102" day in the year starting January 1).

File Edit Format View Help

Area Report Area Report v10.2 EASI/PACE 13:38 14Aug2009 a
Area Report

Layer TC\outputh2002-102.pix 1 - MOD_Grid_snow_500m; Snow_Cover_Daily_Tile;

Mask Layer r C\outputh2002-102.pix 3 [BIT]- UpperHumberRiverAboveBlackbrook

Pixel Legend Area(%) Cumm Area  Count Areaf(square Kilometers)
so 17.04  17.94 T " 84.58

200 82.06 100. 00 1802 3B6. 81

Total of 2 values 100.00 2196 47139

Figure 2.4: Example of an AREAREPORT Daily Text File Output

The number of different pixel values reported in an individual text file varied throughout
the 10 years of data. This is because only the land classes that were classified within the
specified region (approx. 470 km? with 1,880 pixels), on that given day, are reported. For
example, on April 12, 2002 only two types of land classes were reported: cloud cover
(pixel 50) and snow cover (pixel 200). The following land classes were considered for
this research: snow cover, cloud cover, snow and lake ice, and inland lakes. For the
Upper Humber region, however, there were no inland lakes and therefore no lake ice to

consider for flow modeling.
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A program was written in EASI script to automate the extraction of snow cover
information, see Appendix C for details. The process of extracting snow cover
information from the MODIS imagery followed these steps:

1. import all hdf files, rename files, save in pix format (i.e., 2008-306.pix),

2. clip hdf files to cover only the island of Newfoundland, and

3. append all watershed bitmap files to the pix file and run AREAREPORT program

(this creates daily individual text files with pixel classification information).

2.3.3 Visual Basic

Visual Basic (VB), a programming language used in Microsoft Windows, was used to
write a program that could pick out the percentages of snow cover and cloud cover for
each day and amalgamate the individual text files to import them into MS Excel. This
made the data easier to view, manipulate, and combine with meteorological data for
analysis. See Appendix D for the VB script written to import, combine, and manage all
daily individual output text files from the snow cover data extraction into one Excel

spreadsheet. These imported data were further manipulated in Excel for data analysis.

2.3.4 Snow Cover Depletion Curves

Snow cover depletion curves are useful plots which can easily and accurately depict how
a snowpack melts over its seasonal snowmelt period. These snow depletion curves are the
final product developed from the satellite images. It is typical to observe a gradual

decrease in snow covered area over the seasonal melt period. Snow covered area,
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however, is not a clear measure for snow reserves in terms of water equivalent (Seidel
and Martinec 2004) and it is complicated by spatial distribution of slope, aspect, and

type of forest cover (Watt 1989).

Snow depletion curves are typically reverse s-shaped: defined as being steep in the
middle and flat on both ends. The reason behind the reverse s-shape is that the frequency
distribution of the snow depths follows this form and snowmelt starts at lower elevations
of the basin, progresses across the medium elevations, and finishes at the upper parts due

to temperature lapse rate.

Snow cover depletion curves are never completely smooth between measured points.
These blips in the curve are caused by climate irregularities during the snowmelt season.
During periods of extremely cold temperatures the snowmelt decline is temporarily
halted, whereas during periods of exceptionally warm temperatures the decline is steeper
(Seidel and Martinec 2004). Of course, the more frequently this snow cover data is

obtained, the more accurate the decline is plotted with smaller variations.

There are three basic types of depletion curves originally defined by Hall and Martinec
(1985). First, the conventional depletion curve (CDC), type I, plots ‘Snow Covered Area’
vs. ‘Time’. While this is the simplest curve to plot, since the data is the most easily
attainable, it also provides the least amount of information as the rapidity of decline is

solely based on initial snow water equivalent (SWE). SWE is the amount of water in a
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snowpack based on density. Second, the modified depletion curve I (MDCI), type I,
plots ‘Snow Covered Area’ vs. ‘Cumulative Degree-Days’. This claims to improve the
observation of seasonal snowmelt because the rapidity of decline is based on both the
initial SWE and temperature conditions. This adaptation eliminates the effect of
temperature differences from year to year. Third, the modified depletion curve 1l
(MDCII), type IlI, plots ‘Snow Covered Area’ vs. ‘Cumulative Snowmelt Depth’. This
depletion curve (DC) provides the best and most accurate information on snowmelt out of
the three plots. The rapidity of decline is based on the actual volume of water, provided
that all of the snowpack were to melt. It offers information on the likelihood that the
degree-day factor alters throughout the season (Rango and van Katwijk 1990). There are
secondary Type Il and Type 11l depletion curves which take into account the melting of

new snow fallen during the snowmelt period.

Type | and Type Il depletion curves were derived for the 10 years (2000 to 2009) of snow
cover data over the Upper Humber River basin (see Appendix E). At this time, no snow
water equivalent data was available. Type Il curves were not plotted. Figure 2.5 shows
typical Type | snow depletion curves at the 20% cloud cover threshold for 2002 and

2005.
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Figure 2.5: Typical Type | Conventional Snow Depletion Curves at 20% Cloud Cover

The average snowmelt period over the 10 years of data began mid-May and ended mid-

June, lasting an entire month. The MODIS/Terra images in Figure 2.6 provide a better

visual of the snow ablation period over the Upper Humber region lasting on average

approximately 30 days.
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Figure 2.6: Upper Humber Basin above Black Brook Snowmelt Period for 2003 Depicted
by Processed MODIS/Terra Images using PCI Geomatica

The snow depletion curves are not naturally smooth. The sharp peaks and edges are
created because of the low number of data points (approx. 10/year), from implementing
the 20% cloud cover threshold. There were only approximately 10 data points over a 90
days period for each year. To obtain the percent of daily area snow coverage, linear
interpolation was used between known values to fill in the gaps. Certainly, the instability
and uncertainty lies in between the data points. These time intervals between the points
can create an inaccuracy for shape of the depletion curves and a single point can skew the
understanding of the satellite images (Seidel and Martinec 2004). It is vital, for real-time

runoff forecasts, to obtain the satellite snow cover data within days after a satellite
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overflight and also to extrapolate the depletion curves of the snow coverage to the future

weeks (DeWalle and Rango 2008).

This chapter has explained every detail of remotely sensed snow cover data required for
its implementation into a snowmelt runoff model for daily flow modeling. This entailed:
selecting the proper sensor; advantages and disadvantages of snow cover data for the
Humber River, NL; data collection, validation, and management; and snow cover
depletion curves. Although the snow cover DCs are susceptible to many accuracy pitfalls,
they provide a sufficient estimate of snow cover in an area where no significant amount
of snow data has been archived. These curves also provide an estimate on the percent

snowmelt over time.
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- Chapter 3 -

Daily Flow Modeling

The purpose of daily flow modeling is to be able to forecast the next day’s flow rates in
the water body being analyzed. These daily forecasted flow rates enable one to prepare
for and manage possible flooding in populated areas. The predicted daily flows can also
help water management for hydropower companies. This includes playing a role in

hydropower generation and sales.

The use of snow to help predict daily flow rates is considered a more complex addition to
rainfall runoff models. The lag between when it falls and when it produces runoff and
groundwater recharge is the differentiating factor between how snow and rain are treated

in hydrology (Maidment 1993).

3.1 Choosing a Snowmelt Runoff Model (SRM)

Choosing a rainfall runoff model that incorporates snowmelt was an important task.
Many factors were considered. The general criteria for choosing a runoff model are: (1)
reliability, (2) ease of use (including input data requirements and data availability), (3)

performance and accuracy of results, (4) characteristics of study watershed (most
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important being basin relief), and (5) cost of setting-up and running model (Watt 1989). It
was important to identify the purpose of the model in terms of desired output and
available input data. An SRM is essentially made up of two parts (1) calculating the

amount of snowmelt and rainfall and (2) converting these numbers into runoff.

Streamflow predictions are based on two groups of key terms used to describe rainfall
inputs. The first group contains the water storage terms. This group encompasses
interception, soil moisture, and surface storage. The second group are the flux terms. This
group includes infiltration, evapotranspiration, snowmelt, interflow, groundwater
baseflow, and surface runoff from rainfall and snowmelt. These terms can all affect

streamflows and can each be used at varying levels of complexity (Maidment 1993).

Of course snowmelt is the most important additional direct input required for this model.
Background information on snow is essential to understand before moving forward in
choosing a model. Snow is a form of precipitation made of falling or deposited ice
particles and is often formed from the freezing of the water vapour in the air. For
modeling, the focus is on snow cover rather than falling snow. The model must also look
at temporary and seasonal snow cover (lasting several months). This snow should not last
throughout the summer, hence the terms: temporary and seasonal. Snow cover represents
an important geophysical variable for climate, especially in affecting the ground’s albedo

effect caused by its strong reflection properties (Rees 2006). Albedo is a measure of how
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strong light is reflected from light sources, like the sun. It is a specific form of

reflectivity.

The type of forecasting and how often the model is updated are other factors considered
in choosing an appropriate model. Forecasting can be used for estimating conditions at a
specific future date or during a particular time period. It is also used to predict the
occurrence of extreme events (floods and droughts), to operate water resource systems, or
to negotiate contracts in hydropower sales. The frequency of updating the model was also
important to consider because often as the forecasting “lead time” increases, the
forecasting accuracy decreases. Of course, a model with the ability for real-time uplink

would be ideal.

SRM’s can be divided into two main methods: (1) the energy-budget method and (2) the
degree-day method. The energy-budget method is considered a complex water balance
with many parameters for physical model representation. This method uses conservation
of energy to a fixed volume. The sum of the energy fluxes by radiation, convection,
conduction, and advection in addition to the change in internal energy in the volume
yields zero change and all energy is in check, see Equation [3.1]. Simply, the energy-

budget method estimates the amount of energy available for snowmelt (Maidment 1993).
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[3.1] Q= Qu + Qn + Qe + Qg + Qu — 5

Where:

Qm = energy available for melt;
Qn = net radiation (flux of energy at the surface due to exchange of radiation);
n = sensible energy (flux of energy at the surface due to the difference in temperature
between the surface and overlying air);
Q. = latent energy (flux of energy exchanged from vapour movement at the surface from
the difference in vapour pressure between the surface and overlying air);
Qg = ground heat (flux of energy exchanged by conduction);
Q. = advective energy (energy derived from external sources, i.e. rain); and
AU/At = rate of change of internal energy over time (Maidment 1993).

A method such as the energy-budget requires many detailed inputs. Problems may arise
with detailed input series such as: (1) dew point, (2) wind speed, and (3) solar radiation;
given that numerous continuous simulation models need testing over an extensive time
period to ‘warm-up’ (i.e., validate) the model. This ‘warm-up’ ensures that initial
parameter settings are correct (Watt 1989). Often there are just not enough resources
available to obtain all inputs with enough accuracy and/or the time period of available
data is simply not long enough for proper model start-up. Additionally, although the
energy-budget methods can provide a solid understanding of all variables involved in

flood forecasting, they may not all be significant for the specific study region.

The second method for runoff models is the degree-day method. It is a more basic model
fundamentally based on temperature index methods. Temperature index methods do not

incorporate a complex or even adequate physical description of the melt process as the
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energy balance methods do, but the temperature based models can still yield practical
results. Instead, the temperature index method relates snowmelt to air temperatures. As
temperature increases, the volume of snowmelt increases. Equation [3.2] provides the
most common calculation used to relate snowmelt to temperature, referred to as the

degree-day method (Maidment 1993).

[3.2] M = Ms(T; — Ty)

Where:

M = depth of meltwater produced over the given interval of time [mm/day];
M = melt factor [mm/day°C)];

Ti = index air temperature (often an average of the interval of time) [°C]; and
Ty = base temperature (often set to 0 °C) [°C].

Air temperature is a realistic index for heavily forested areas, such as the Humber Valley.
Forest canopy lessens major fluctuations in parameters such as wind velocity and
longwave radiation exchange (low energy radiation entering and leaving the Earth). It
also reduces the significance of shortwave radiation (which is radiant energy in certain

wavelengths: energy given off by the sun) (Watt 1989).

After careful consideration, Martinec and Rango’s SRM (Martinec et al. 1983 and 2008)
was chosen. The two key reasons for choosing this simple degree-day SMR model were:
(2) it is a degree-day method specifically useful when incorporating snowmelt into the

balance and (2) it uses short-term forecasting and can be updated daily. Many other
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factors were significant in choosing the best model for this research: input parameters,
ease of use, robustness, output quality, reliability, simplicity, effectiveness, cost, and

modeling with a daily time-step.

3.2 Martinec and Rango’s Snowmelt Runoff Model

The snowmelt runoff model (SRM) was originally developed by Martinec (1975)
(Martinec 1975). It is a well-known model used to predict next day flow rates. This short-
duration forecast model was specifically developed to predict snowmelt runoff. Over the
years, the SRM has been modified and improved in collaboration with Al Rango
(NASA). The most recent update was in 1998, version 4.0. This hydrological model has
been applied to many mountainous terrains, where the basin is subdivided into elevation

zones (DeWalle and Rango 2008).

Martinec and Rango’s SRM is one of the first and still most widely used hydrological
models which incorporates satellite snow cover mapping as a direct input variable.
Various other models consider satellite snow cover data but as non-binding auxiliary
information. It also has modest input variable requirements and the degree-day model is
preferred for dense forest canopy coverage. SRM performance can worsen when air
temperature and precipitation data are forecasted too far (i.e., weeks or months) in
advance and deviate from the observed values (DeWalle and Rango 2008). Of course,
periodic updating will reduce these inaccuracies. For this analysis and for the best

possible results the model is updated daily.
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Martinec and Rango’s SRM has also been applied to numerous basins of varying
characteristics with acceptable results. In 1979 the World Meteorological Organization
(WMO) performed a comparison of 11 snowmelt runoff models on six different basins
for a 10 year period. This model was tested across various geographical regions and
various basin sizes ranging from an area of 10 km? to 2200 km?. Differences in elevation
also ranged from 350 m to 3500 m. Computed daily runoff values were compared with
the measured values. Model performance was based on two especially informative
criteria: coefficient of determination, R? and volume deviation, D,. Based on WMO’s
test, Martinec and Rango’s SRM best represents remote sensing in snow hydrology. The
model only requires six parameters and was at least as accurate as the CEQUEAU model
(developed at the University of Quebec), which requires 31 parameters (Seidel and

Martinec 2004).

The Rango-Martinec model is an ideal model as there are no set limits with regard to
basin size and elevation range. Basin elevation is a significant characteristic for flood
forecasting, especially when predicting snowmelt rates. A basin with high relief is often
divided into elevation zones for separate analysis. These zones are assigned using a
digital elevation model (DEM). Basins of relatively low relief are considered as a single
unit with only one elevation zone (Watt 1989). For Martinec and Rango’s SRM it is
recommended that the basin be divided into elevation zones if the elevation range of the

basin is > 500 m (DeWalle and Rango 2008). The Upper Humber Basin only ranges from
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600 m to 800 m, an elevation difference of 200 m, so this basin can be treated as a single

unit.

3.3 Background Information: Region of Interest

The Upper Humber River basin, as measured above Black Brook, has an area of
approximately 470 km?. This watershed has 200 m change in elevation (much less than
500 m) so this basin was not subdivided into elevation zones. As a result, the temperature
lapse rate was not required. The lapse rate accounts for the decrease in temperature with
an increase in elevation. Again, the main objective from Chapter 2 was to use the percent
snow cover data extracted from the remotely sensed images and display them as
conventional snow depletion curves (CDCs) for every snowmelt season from 2000 to

2009. Snow depletion plots can be viewed in Appendix E.

For each snowmelt season, lasting approximately 122 days, there were on average 10
snow data points considered valid from quality assessment and cloud cover threshold. For
simplicity, the CDC’s were derived using linear interpolation. As discussed in Chapter 2,
there are three types of snow depletion curves introduced by Hall and Martinec (1985).
First, Type | is the conventional depletion curve (CDC). It is plotted as the percent snow
covered area vs. time elapsed. The second snow depletion curve, Type II-A is the
modified depletion curve (MDC). The percent snow covered area is plotted against
cumulative degree days. There is a Type I1-B curve that takes into account the melting of

newly fallen snow by subtracting the degree days required to melt the new snow from the

49



cumulative degree days. The third depletion curve, Type IlI-A is named the second
modified depletion curve (MDCII). For this curve, percent snow covered area is plotted
against cumulative snow depth. This is the most refined and accurate depletion curve as it
can assess the likelihood that the degree-day factor alters throughout the season. This
variation of the degree-day factor over the snowmelt season is due to change in the
density and albedo of the snowpack. The Type I1I-B depletion curve accounts for new
snow fall during the melt season, very similar to the Type II-B curve, but the Type 111-B
curve plots against cumulative snow depth as opposed to cumulative degree-days (Rango

and van Katwijk 1990).

3.4 Input Parameters

This section explains how the SRM calculates the daily flows and the required input
parameters. This model consists of two main terms. Simply, the first term is a portion of
the flow from yesterday (Qn) and the second term consists of additional water from
precipitation and predicted snowmelt. Today’s flow (Qn+1) is calculated by Equation

[3.3].
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AX1000
86400

[33] Qn+1 = kQpn + (1-k) [Csan(Tn + ATn)Sn + CrPn]

Where:

Q = average daily flow [m*/s];

k = recession coefficient [(m®/s)/(m%/s)];

¢ = runoff coefficient [dimensionless];

cs refers to snow runoff coefficient [dimensionless];
¢, refers to rain runoff coefficient [dimensionless];
a=degree-day factor [mm°C™*d™];

T = degree-days [°C*d];

AT = correction by lapse rate [°C*d];

S = fraction of snow covered area [fraction];

P = precipitation [mm];

A = area of basin [km?]; and

n = number of days [d].

The first term in the model is the term that takes into account autocorrelation between

flows in adjacent time periods. The recession coefficient, k, can be considered an

autoregressive coefficient. This means that for larger watersheds the flows in adjacent

time periods would be highly autocorrelated, whereas for smaller watersheds the flows

would be more sensitive to the daily climate conditions. Flows that are influenced more

by the daily meteorological conditions would make the flows in adjacent time periods

less significant (McCuen 1998).

The second term in the model represents the additional water from precipitation and

predicted snowmelt based on temperature and area of the basin. Logically, the factor (1-

k) works in balance with the k factor in the first term: it increases the second term when
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the autoregressive coefficient, k, is small and vice-versa. Breaking down the second term:
the precipitation, P, is multiplied by the rain runoff coefficient (the fraction of rainfall
contributing to runoff), ¢, and the watershed area, A, to determine the amount of
rainwater being added to the flow prediction during a specific forecast period. The
predicted melt from the snowpack is generated from the product c.aT$S, again multiplied
by the watershed area, A. The two runoff coefficients for rain and snow, respectively (c;
and cs), are used to assess the amount of precipitation that contributes directly to runoff,
whereas the rest of the water may evaporate or be absorbed into the ground (McCuen
1998). The last bit of the equation is a unit conversion from millimetre-square kilometers

per day to cubic meters per second.

A critical temperature threshold must be set. T is used for precipitation differentiation
between rain and snow (i.e. rain when T > T and new snow when T < Tgit). When
precipitation is classified as rainfall the contribution is immediate, whereas snow has a
delayed effect on runoff since its conversion to melt water takes time. Often T is Set to
0 °C (any temperature equal to or above 0 °C is classified as rainfall and any temperature
below 0 °C is classified as snowfall). Provided that new snow falls over a previously
snow covered area, it is assumed to become part of the seasonal snowpack. This means
that the effect of the new snow is included in the derived snow depletion curve (DeWalle
and Rango 2008). New snow over the Upper Humber Basin was assumed to fall over
previously snow covered area as it is a highly snow covered area and the analysis always

took place well beyond snow accumulation periods (starting March 1%).
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Degree-days, DD, in Martinec’s SRM model were simply calculated as the expression in

Equation [3.4].

[3.4] DD, = ). T,,whenT > 0 °C

Where:

DD, = total degree-days up to n days from appropriate starting point; and

T, = average daily temperatures (°C) on n™ day.

In this case, the cumulative degree-days measure the heating of the snowpack. It is
assumed that as the number of degree-days increases, so does the amount of snowmelted
from the snowpack (leading to increased runoff). Starting March 1% of every snowmelt
season, the average daily temperature was observed and if it exceeded 0 °C (set base
temperature, T¢it) then it was included in the degree-days for melting the snowpack, the
degree-days were cumulative every day forward until June 30" of the given season.
Although it is possible that for any given year the temperature may rise above 0 °C
before March 1%, it is unlikely in Newfoundland and Labrador. Even if the temperature
did rise above 0 °C before March 1%, it is likely an irregularity and would not contribute
to any quantifiable increase in runoff volume due to snowmelt. Starting March 1% was
also convenient for a controlled method of calculating degree-days over the past 10 years

since MODIS snow cover data was provided starting March 1* 2000.
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The SRM parameters described from Equation [3.3] can be predetermined in four ways:
(1) actual measurements, (2) hydrological judgements on basin characteristics, (3)
theoretical relations, or (4) empirical regression relationships (Martinec and Rango 1986).
Of course, these parameter ranges must make physical sense and remain within their
acceptable ranges. For example, the runoff coefficients (c; and c;) should not exceed 1.0.
The critical temperature for determining whether precipitation is classified as rain or
snow should not be less than 0°C. The degree-day factor (a) should fall within the range
of values recommended for similar basin conditions. For example, the degree-day factor
includes a radiation component and therefore higher values are expected in the Himalayas
and lower values in Scandinavia (northern Europe) (Seidel and Martinec 2004). The
density of melting snow usually ranges from 0.3 to 0.55 g/cm® and so the degree-day
factors often end up ranging between 3.5 to 6 mm/°C/day. There are always exceptions to
the rule, the Upper Humber experiences snow cover under a forest canopy, so lower ‘a’
values are expected. Low snow densities correspond to low degree-day factors (Martinec
and Rango 1986). Furthermore, ‘a’ has seasonality effects and is expected to increase
over the melt season concurrent with increasing snow density and decreasing albedo (as
the snow becomes ‘older’ and ‘dirtier’). The recession coefficient (k) expresses the losses
and requires hydrological judgement and analysis from past discharge data (Seidel and
Martinec 2004). This autoregressive input parameter has a large impact on snowmelt
runoff computations and can range from about 0.4 to 0.95 (Martinec and Rango 1986),
indicating a next day flow rate prediction influenced up to as much as 95% from the

previous day’s flow.
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3.4.1 Daily Flow, Temperature, and Precipitation Data

The daily flow, temperature, and precipitation data are all retrieved from the Government
of Newfoundland and Labrador via the WRMD Hydrologic Modelling sector.
Considering the satellite snow cover data were available only from 2000 to 2009, only

the corresponding flow, temperature, and precipitation data were acquired.

The WRMD has numerous hydrometric stations, used to measure water level (stage) in
and around the Humber River Basin, NL. These water level measurements are converted
to flow rates (m*/s) by the proper stage-discharge curve. The stage-discharge curves are
developed and adjusted from measurements taken throughout the year across
Newfoundland and Labrador by the WRMD. The stage readings are taken hourly and
averaged every day (from midnight to midnight) (Wills, H., personal communication,
April 19, 2010). There are two types of flow data: (1) the real-time data, from which the
measurements are taken as is and (2) the archived hydrometric data, which goes through
editing and correction before they are stored. The archived hydrometric data are adjusted
for ice and other possible obstructions in the river. For this analysis the real-time flows,
directly from the Humber River above Black Brook station, were used for a direct

measurement of runoff.

Rain weight gauges are used to obtain daily precipitation measurements in millimetres.

The weight is recorded every hour and then is converted into millimetres of rain. This

hourly data is summed up over the day from the 24 readings from midnight to midnight.
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The daily rainfall is a measure of accumulated rainfall. Rainfall intensity is not measured.
The rain weight gauges are calibrated yearly by adding weights and obtaining the

readings (Wills, H., personal communication, April 19, 2010).

The climate stations are used to record air temperature at various locations throughout the
Humber River Basin, NL. These sensors measure and record the data hourly. Daily
measurements in degrees Celsius are averaged over 24 readings from midnight to

midnight (Wills, H., personal communication, April 19, 2010).

3.4.2 Snow Cover Data
Type | curves were used in this analysis. Although Type I1A curves were also assessed,
the exchange of time for cumulative degree days made no significant difference in

modeling flow accuracy, much less than a 5% difference.

Small steps have been made towards obtaining more accurate and influential data for
flow predictions. The WRMD performed their first snow cover survey of the Upper
Humber River watershed during the 2008-2009 snow season, in March 2009. Twenty
stations were established during the field visit, snow depth and snow weight were
measured manually with a snow tube and spring/digital scales. Snow depth was used to
calculate both snow water equivalents (SWE) and percent density of the Upper Humber
River watershed snowpack (Water Resources and Management Division 2009). Although

some SWE data for the Upper Humber has been measured and recorded, the data has not
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yet reached a satisfactory level of quantity and quality. In effect, Type Il curves were not
an option since the knowledge of the snowpack and corresponding snowmelt for this area
is limited. There was simply not enough snow depth data to create the more desired Type
Il curves. Typically, at least a few years of snow data would be required to establish
preliminary assessments of the snowmelt behaviour for a particular region. Although
Deer Lake Power has been conducting annual snow surveys in western NL since 1928,
their snow survey sites are located in the Corner Brook watershed and the Grand Lake
watershed. Some of the Grand Lake watersheds are close to the Upper Humber watershed
but neither the Corner Brook nor Grand Lake watersheds actually flow into the Upper

Humber River (Abbott, K., personal communication, June 16, 2010).

The Type | snow cover depletion curves were developed and daily values were read off
the curves to be used as inputs for snow runoff computations in the Rango-Martinec
SRM. Of course, error from snow cover depletion curve derivation propagates directly to
runoff values (Seidel and Martinec 2004). See Equation [3.5] as an expression explaining

this error propagation.

[35]Vy=MxSxA
Where:

Vm = meltwater volume [m®];

M = melt depth [m];

S = snow coverage [fraction]; and
A = area of basin [m?].
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In attempt to minimize these errors, new snow throughout the season is not accounted for
in the snowmelt depletion curves. It is still however recognized in Martinec’s SRM as
precipitation and therefore contributes to the runoff predictions (Seidel and Martinec
2004). In the specific case of the Upper Humber Basin, separation between new and old
snow is not necessary since new snow on top of old snow can be added to the depletion

curve with minimal error propagation.

3.4.3 Unknown Parameters

There are four unknown parameters in the SRM model: recession coefficient (k), snow
runoff coefficient (cs), rain runoff coefficient (c;), and degree-day factor (a). The
recession coefficient (k) can be determined through analysis of historical data. Often
larger basins have a higher k factor than in smaller basins (DeWalle and Rango 2008).
The runoff coefficients (c; and cs) indicate the percentage of precipitation (rain or snow)
that appears as runoff. The degree-day factor (a) converts the number of degree-days into

daily snowmelt depth.

These four parameters were optimized through Design of Experiments (DOE)
methodology. DOE allows for the study of multiple factors in parallel using advanced
matrix-based test plans (Anderson 2005). It can measure interaction effects, which are
often significant in predicting responses. The use of a certain type of DOE allows one to
fit curvature. DOE limits the number of runs required to perform the experiment because

of its ability to study multiple factors simultaneously. DOE was used to learn which
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combination of factors provided the best fit to the observed runoff. The most
advantageous aspect of DOE is that it can measure interaction effects. Interaction effects
are the effects that the parameters have in combination and they are often significant in
predicting responses. One-factor-at-a-time method cannot detect these interactions since

only one parameter is varied while the others remain fixed.

3.5 Model Efficiency Measures

Many measures were used to compare model efficiency at various parameter settings. Of
course, a visual assessment of observed and modeled flows will immediately show
whether the simulation is successful or not. The three numerical measures used were the
Nash-Sutcliffe coefficient NSE, volume deviation D,, and ratio of observed flow to

modeled flow Q/Qn,.

These measures were used to help determine the highest model efficiency and ideal
parameter settings. Although these measures were all used to determine model efficiency,
some carried more weight than others. The Nash-Sutcliffe coefficient, NSE, provided the
best information for this research, as it is able to quickly and easily quantify the accuracy

of model outputs provided that there is observed data available for comparisons.

The Nash-Sutcliffe model efficiency coefficient is a measure of goodness-of-fit for

hydrologic models. In other words, it is used to assess the predictive power of a

hydrological model. The Nash-Sutcliffe coefficient, E, is calculated using Equation [3.6].

59



ST (h-0h)?
Z?=1(Q5—QO)2

[36]E =1
Where:

Q', = observed flow at time t [m*/s];

Q' = modeled flow at time t [m®/s]; and

Q, = average daily observed discharge for the simulation season or for the multiple
simulation seasons (depends on the time period) [m*/s].

Essentially the goodness-of-fit is based on the complement of the residual variance
between the modeled and observed flows divided by the observed flow data variance.
The Nash-Sutcliffe model efficiency coefficient ranges from - to +1 where E = 1,
perfect match; E = 0, predictions are as accurate as Q,; and E <0, Q, is a better predictor
than the model (DeWalle and Rango 2008). The Nash-Sutcliffe coefficient can be
calculated with two different average daily discharge values: (1) the average daily
discharge for each simulation season, or (2) the average daily discharge over multiple
simulation seasons. Both methods provide different interpretations: (1) a season-by-

season fit, or (2) an overall fit, respectively.

Volume deviation, D,, is the second measure used to characterize the accuracy of the
daily modeled flows. The volume is calculated as the accumulated flow multiplied by
accumulated time period. The difference in water volume between observed and modeled
values allows one to take note of the overall volume of water being carried in the water

body and it provides an estimate of water quantity over a desired time period, whether the
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approximation is underestimated, on target, or overestimated. D, is defined in Equation

[3.7] as:

[3.71 D, = Z2=& x 100
VR

Where:

D, = the percentage difference between the total observed and modeled runoff [%];
V/r = observed runoff volume over the snowmelt season [m®]; and
VR = modeled runoff volume over the snowmelt season [m?].

The third measure is expressed as the ratio of observed flow over modeled flow, Qo/Qn.
It is a simple measure implemented to quickly assess whether the seasonal daily modeled
flows are able to closely follow the seasonal daily observed flows. The Qo/Qn ratio is
calculated for each day in the snowmelt season and then the ratio is averaged out over a
given time period, to a single estimate. This key explains the three possible conclusions
from this measure:

e Qo/Qm>1; Modeled flows are underestimated

e Qo/Qm<1; Modeled flows are overestimated

e Qo/Qm=1; Modeled flows are equal to observed flows

3.6 Design of Experiments Parameter Analysis

For this analysis, a 2* factor factorial was first implemented and used as a basis or

starting point for these coefficients. This analysis was initially only performed on one
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random year (2002) for testing. A 2 factorial design is a design with k factors, each at
two levels (low and high). A 2* factorial design implies four factors each tested at two
levels. The low and high levels were set logically, but were essentially random pick-up
starting points and refined based on the results of the initial 2* design. A 2* design
contains k main effects and 2k-1 effects (which includes main effects and interaction
effects). The 2* test has four main effects and seven effects in total. The analysis
procedure for a 2% design constitute six steps, they are: (1) estimation of factor effects, (2)
form initial model, (3) perform statistical testing, (4) refine model, (5) analyze residuals,
and (6) interpret results (Montgomery 2001). Statistical testing involves analysis of
variance (ANOVA). The data is checked for normality, constant variance of residuals,
and random run order. Design-Expert, a DOE software program, provides all of the

information needed to interpret the results of the experiment properly.

As the main hydrological model efficiency measure, the Nash-Sutcliffe coefficient, E,
was used to compare the best fits between the observed flows and the modeled flows
using Martinec’s model, referred to as the response variable. Table 3.1 provides the
information used for the 2* factorial preliminary design: factors analyzed and their

corresponding low and high levels.
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Table 3.1: Preliminary 2* Factorial Design

Recession Coefficient, k 0.2 0.6
Snow Runoff Coefficient, c, 0.3 0.7
Rain Runoff Coefficient, c, 0.3 0.7
Degree-Day Factor, a 1.0 8.0

The results from the 2* factorial experiment showed the highest E to be 0.60. The result is
not ideal but was used as a starting point for further DOE analysis. This further analysis
entailed checking for curvature and attempting to improve the model fit with a higher
Nash-Sutcliffe value. From the preliminary analysis it was observed that the variation of
the rain runoff coefficient, ¢, did not significantly impact the results and so the c, was left
as a constant, set to 0.5 (average of low (0.3) and high (0.7) values tested) for the
remainder of the tests. From the DOE analysis, the rain runoff coefficient was deemed
non-significant in the model, at the 5% significance level. See Appendix F for the
complete work and results from DOE testing, run sequence, tests, and results (labelled as

‘Performing a DOE Analysis on Four Factors for Martinec’s Snowmelt Runoff Model”).

The Box-Behnken response surface design was then used to model the curvature and

optimize the three remaining coefficients (k, a, and cs). Modeling coefficients were tested

63



for all eight calibration years (2000 to 2007). A Box-Behnken design (1960) has three-
levels and is described as a spherical design (also known as a rotatable design). It is
called a spherical design because all testing points lie on a sphere (of radiusv2). This
design does not contain any points at the vertices of the cubic region, created by the
upper and lower limits for each variable. It also does not contain an embedded factorial or
fractional factorial design that can be used as a starter point, as opposed to the central
composite design (CCD) — another DOE design used to test for curvature (Montgomery

2001).

The Box-Behnken design required 13 runs, which included only one center-point. Only
one center-point was necessary because the combination is calculated from a formula and
no variation exists, unlike in a physical experiment where center-point variability is
inevitable. The three parameters (a, cs, and k) were tested at three levels each. Table 3.2

shows the three factors tested each at three levels (low, center, and high).

Table 3.2: Refined Box-Behnken Design

Recession Coefficient, k

Snow Runoff Coefficient, c; 0.2 0.3 0.4

Degree-Day Factor, a 1.0 1.5 2.0
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The Box-Behnken design improved and refined the results a great deal with an optimized
E = 0.81. Figure 3.1 presents the run order and optimal parameter combinations, proven

by the Nash-Sutcliffe model efficiency coefficient. All assumptions for ANOVA were

met.
= Factor 1 Factor 2 Factor 3 Hesponse 1
% Std Run Block 18- Snow Runo1B8:Degree-Day |C:Recession CMash-Sutcliffe
w
_E 1 Block 1 .40 1.50 0.30 0.55
| L] 2 Block 1 0.40 1.50 0.40 -1.73
10 3 Block 1 0.30 2.00 .40 -1.73
E 11 4 Block 1 0.30 1.00 0.20 0.81
| 13 5 Block 1 0.30 1.50 0.50 0.33
| 9 5 Block 1 0.30 1.00 0.40 0.33
| 4 7 Block 1 0.40 2.00 0.50 -1.51
1 2 Rlock 1 020 100 080 073
L= 7 9 Block 1 0.20 1.50 0.30 0.81
| 2 10 Block 1 0.40 1.00 0.50 0.47
. 11 Block 1 0.30 2.00 0.20 0.58
| 5 12 Block 1 0.20 1.50 0.40 0.32
| 3 13 Block 1 0.20 2.00 0.50 0.47

Figure 3.1: Run Order and Parameter Settings for Box-Behnken Design

3.7 Refining Recession Coefficient

The recession coefficient, k, can also be estimated through plotting Qw1 vs. Q; of the
observed flows. Data was plotted for the first eight years (calibration stage from 2000 to
2007). An example of this plot is shown in Figure 3.2 for the snowmelt season in 2006.

See Appendix G for Q.1 vs. Q;plots on all calibration years (2000 to 2007).
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Figure 3.2: Plot of Qw1 vs. Q¢ with Linear Trend Line Fit to Estimate Recession
Coefficient

A linear trend line was fit to each yearly snowmelt period plot. The slope provided the
average approximate recession coefficient for that year. The slope being the ratio of
yesterdays flow (Q:1) to today’s flow (Qy), see Equation [3.8]. In effect, the volume of
today’s flow can be estimated as being a part of yesterday’s flow. Over the calibration
stage years, the average k-value was discovered to be 0.90. See table 3.3 for the average k

for each year and corresponding linear trend line fit, coefficient of determination, R.
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— Q1
[3.8]k ==

Where:

k = recession coefficient [(m®/s)/(m%/s)];
Q.1 = yesterday’s flow rate [m%s]; and
Q, = today’s flow rate [m?/s].

Table 3.3: Average Recession Coefficient k-value and their Corresponding R* values for
all Calibration Years 2000 to 2007

Year Average k R?

2000 0.8925 0.8024
2001 0.9520 0.9124
2002 0.9366 0.8669
2003 0.9006 0.8162
2004 0.8484 0.7254
2005 0.9490 0.9107
2006 0.9231 0.8568
2007 0.8110 0.6579

Overall Average k = 0.9017 Overall Average R* = 0.8186

The year 2007 has a significantly low correlation compared to the remaining calibration
years. Being only one year out of the eight it was not considered to be of major concern.

Year 2007s flows were likely to have been influenced more by rainfall, snowmelt, and
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temperature throughout the snowmelt season compared to the remaining calibration

years.

In some cases, the recession coefficient varies significantly. This variation can occur over
a time period of many years, over a single year, or even over one snowmelt period — it
depends on basin characteristics and meteorological occurrences. For these cases,

coefficients x and y are calculated using Equation [3.9] (Martinec and Rango 1986).

[39] kns1 = xQ;”

Equation [3.9] explains how k varies, particularly in relation to the current flow rate.
Coefficients x and y are solved by simply recording two coordinate pairs (one of low
flow value and the other of high flow value) from the Q.1 vs. Q; plots. Equation [3.10]
supplies two equations and two unknowns when both coordinate pairs are substituted and

the coefficients are determined (Martinec and Rango 1986).

[3.10] log(k) = log (x) — ylog(Q¢-1)
Where k = %=1
Q

t

For the Upper Humber Basin, however, the k-value over the eight calibration years did
not vary significantly and was accepted as a single k-value. The largest variability of

recession coefficient k is often observed in small basins with low flows less than 10 m®/s.
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As the basin size and flow rate both increase, the recession coefficient experiences much
less fluctuation. For a basin such as the Upper Humber Basin, size 470 km? and flows on
average of 140 m®/s, the k-value can be said to range between 0.90 + 0.05 (Martinec and
Rango 1986). From this new estimation, a refined DOE Box-Behnken design was
performed by varying k from a narrower range: 0.85 to 0.95. Table 3.4 shows the

improved and more concise levels for the three factors at levels low, center, and high.

Table 3.4: Final Box-Behnken Design

Recession Coefficient, k
Snow Runoff Coefficient, c; 0.2 0.3 0.4

Degree-Day Factor, a 1.0 15 2.0

This resulted in an optimal overall Nash-Sutcliffe coefficient of 0.85 averaged over all
eight calibration years (2000 to 2007), an improvement from the 0.81 obtained earlier.

Figure 3.3 depicts this final DOE analysis using Design Expert.
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= Factor 1 Factor 2 Factor 3 Fesponse 1
% Std | Run Block l&:Snow Runo1B:Degree-Day [C.Recession CNash-Sutcliffe
w0
_B' 1 Block 1 0.40 1.50 0.85 0.863
| g 2 Block 1 0.40 1.50 0.85 0.7
| 10 3 Block 1 0.30 2.00 0.85 0.7
_ | M 4 Block 1 0.30 1.00 0.95 0.64
| 13 3 Block 1 0.30 1.50 0.80 0.62
| 9 g Block 1 0.30 1.00 0.85 0.83
4 7 Block 1 0.40 2.00 0.80 0.7
| 1 & Block 1 0.20 1.00 0.50 0.85
| T ] Block 1 0.20 1.50 0.85 0.64
| 2 10 Block 1 0.40 1.00 0.50 0.83
| 12 1 Block 1 0.30 2.00 0.95 0.83
| 3 12 Block 1 0.20 1.50 0.85 0.83
] 3 13 Block 1 0.20 2.00 0.80 0.863

Figure 3.3: Final Design of Experiments Analysis using Design-Expert — Run Order,
Level Settings, and Responses

Significant factors at the 5% significance level were the three parameters: A (snow runoff
coefficient), B (degree-day factor), and C (recession coefficient). All three interactions
between parameters: AB, AC, and BC, were found to be significant. All ANOVA
diagnostics passed, with a two-factor interaction model (i.e. no significant curvature), and

adjusted R? of 0.98.

3.8 Model Analysis

The model analysis was divided into two sections: (1) calibration and (2) validation. The
first eight years of data (2000 to 2007) were used to calibrate the model and its

coefficients using DOE. The remaining two years of data (2008 to 2009) were used to
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validate the model. The coefficients calibrated from the 2000 to 2007 data were used in
the validation period to assess whether the modeled flow values were good predictors of
the observed flows. The model efficiency measures used were the Nash-Sutcliffe E, the

volume difference D,, and the Qo/Qm ratio.

3.8.1 Calibration Period

The optimal coefficients using the refined DOE Box-Behnken design for 2000 to 2007
were a = 1.0 mm°C*d™, k = 0.9, ¢; = 0.2, and ¢, = 0.5, with a goodness-of-fit Nash-
Sutcliffe value, E = 0.85. A degree-day factor of 1 mm/°C day means that one degree-day
of thaw can melt one millimeter of water from the snowpack. The snow runoff coefficient
of 0.2, which means 20% of the snowmelt contributes to the flow and the rain runoff
coefficient of 0.5, which means 50% of the rain contributes to the flow. The
autoregressive coefficient is very strong at 0.90, 90% of today’s flow is predicted from
yesterday’s flow. A high k means that the meteorological effects, like snow and rain
runoff, have less of an impact on the prediction of today’s predicted flow rate. A single
value for each key parameter was determined through calibration; this was based on the
important assumption that there is homogeneity of these parameters in the study

watershed.

The modeled flow values were compared visually to the observed flows for every

snowmelt season. Figure 3.4 illustrates one randomly chosen snowmelt season (2001)
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plotting Qmodeted @aNd Qopserved VS. Time. See Appendix H for all Qmodeled @Nd Qobserved VS.

Time plots from 2000 to 2009.

Upper Humber above Black Brook
¢,=0.2,a=10,¢,=05k=0.9

o LTI
140 -
120 = Qobserved

100 - Omodeled
80 - ”
60 - A

o
- i

Flow (m3/s)

Date (days)

Figure 3.4: Comparison of Qmodeled @Nd Qopserved OVEr the 2001 Snowmelt Period

Although the modeled and observed values fit very closely, the modeled values are
lagged by one day. This lag does not aid in forecasting, since the modeled flows are not
actually predicting at all. Instead they are providing an estimate closer to the previous
day’s flow rather than an estimate for today’s flow. This observation shows that the first
term in the model is the dominant term and it means that there is a high autocorrelation
between adjacent time-period flows. Another indication of this high autocorrelation was

observed earlier from the high and dominant autoregressive coefficient, k = 0.9.
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For the final Box-Behnken calibration experiment, the seasonal Nash-Sutcliffe coefficient

was also calculated to assess the fit for each snowmelt season individually. Most seasons

provided an excellent fit observing two seasons with an E above 0.90 (2001 and 2005)

and only two seasons with an E below 0.80 (2004 and 2007). See Table 3.5 for the break

down.

Table 3.5: Seasonal Fit Nash-Sutcliffe Coefficients for Final Box-Behnken Calibration

Experiment 2000 to 2007

Snowmelt Year

Nash Sutcliffe Coefficient, E

2000 0.80
2001 0.91
2002 0.85
2003 0.84
2004 0.73
2005 0.91
2006 0.86
2007 0.64

A ratio of Q,/Qn was calculated to numerically assess whether the overall modeled flows

are being overestimated or underestimated. Over the calibration period, the ratio of

observed flows to modeled flows was 1.06. This draws the conclusion that on average the

modeled flows are 6% lower than the observed flows.
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The percent volume deviation, Dy, for each year was always less than 6.5%. Table 3.6

provides the yearly D, from snowmelt seasons 2000 to 2007.

Table 3.6: Percent VVolume Difference for Snowmelt Seasons 2000 to 2007

Snowmelt Year Dv, %
2000 1.10
2001 4.34
2002 6.40
2003 1.57
2004 0.99
2005 4.33
2006 2.62
2007 241

All differences in volume report that the observed runoff volumes were greater than the
modeled runoff volumes (Vr > VR’). There are two possible reasons for this consistent
underestimation (1) not all sources of runoff are accounted for (i.e. ground infiltration or

evaporation), or, (2) not all accounted for sources are being modeled properly.

3.8.2 Validation Period

The two-year validation period from 2008 to 2009, was used to test the prediction power

of the model and its estimated coefficients set from the calibration stage. After running
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the SRM, the predictions for 2008 and 2009 showed good results with an overall average
Nash-Sutcliffe coefficient of 0.81. Refer to Figures 3.5 and 3.6 as they illustrate the close

fit between the modeled and observed flows for 2008 and 2009, respectively.

Upper Humber above Black Brook (2008)
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Figure 3.5: Comparison of Qmogeled aNd Qopserved OVEr the 2008 Snowmelt Period
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Upper Humber above Black Brook (2009)
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Figure 3.6: Comparison of Qmogeled aNd Qopserved OVEr the 2009 Snowmelt Period

The seasonal Nash-Sutcliffe coefficients for the validation stage are reported in Table 3.7.
Year 2009 was less predictable from using the calibrated parameters than year 2008. It
may be that the 2009 snowmelt season was different from those of the calibration stages.

Table 3.7: Seasonal Fit Nash-Sutcliffe Coefficients for Final Box-Behnken Validation
Experiment 2008 to 2009

Snowmelt Year Nash-Sutcliffe Coefficient, E
2008 0.86
2009 0.75

The ratio of Qopserved OVEr Qmodeled Was 1.07 for the validation stage, slightly higher than

the ratio from the calibration stage (1.06). This means that the two validation year flows
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being modeled are on average seven percent lower than the actual observed flow rates.
The one day lag was still present indicating a strong autocorrelation to adjacent flows for
forecasting time periods. The strong influence of the first term in the SRM naturally
made the second term much less significant (the first term being a percentage of
yesterday’s flow and the second term being the temperature effects as well as snow and
rain runoff). It is difficult to assess whether the SRM is a model worth applying to the
Humber River Basin with a validation period of only two years, but currently there is no
improvement from adding the snow data into the prediction model. The difference in
volume for the two validation years were both less than the 6.5% and within range from

the volume differences calculated for the calibration years, see Table 3.8.

Table 3.8: Percent VVolume Difference for Snowmelt Seasons 2008 and 2009

Year Dy, %0
2008 6.20
2009 2.50

Martinec (1972) analyzed information for a mountainous watershed of area 43.2 km?.
The data indicated that the percent snow cover area at the time of the peak runoff varied
from about 25 to 70%. Peak flows for the Humber River Basin, watershed area of 470
km?, ranged in snow coverage of 34 to 97% from years 2000 to 2009. This observation
indicates that the peak runoff in the snowmelt season does not necessarily coincide with a

certain percent snow coverage.
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The two stages, calibration and validation, of this research both provided significant
insight in flood forecasting on the Upper Humber River, NL, especially in adapting snow
data to aid in flood forecasting. Martinec’s snowmelt runoff model functioned well over
the tested 10 year period. Design of experiments also proved successful in determining
the significance and appropriate levels for each unknown parameter (concluding that the
rainfall runoff coefficient was the only parameter of the four tested to be non-significant
at the 5% significance level). Model efficiency measures such as the Nash-Sutcliffe
coefficient, NSE, also supplied important information on the functionality of the model
and its ability to predict daily future flows. The final chapters will provide more detailed
information on research results and recommendations to improve flow predictions for the

Upper Humber Basin.
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- Chapter 4 -

Snow Water Equivalent (SWE) Data

The primary research objectives, involving remotely sensed snow cover data and daily
flow modeling, have been completed. Although the analysis using snow cover data as an
input variable to Martinec and Rango’s SRM shows promise for daily flow predictions,
other alternatives, if feasible, should be assessed. The secondary research objective was
developed to discover whether or not recently available SWE data are: (1) accurate and
useable, and if so, then (2) to determine whether or not this data will improve daily flow
predictions for the Upper Humber Basin. SWE data via satellite became available for the
Humber River Basin, NL in January, 2010. SWE is expressed as quantity of snow
reserves: the amount of liquid water in the snowpack, if the snowpack were to melt
completely. SWE is calculated by Equation [4.1] (Natural Resources Conservation

Service 2010).
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[4.1] SWE = density X depth

Where:

SWE = snow water equivalent [mm];
density = relative density (psnow/pwater) [(Kg/m®)/(kg/m®)]; and
depth = depth of snow [mm].

To ensure proper units, the density must be represented as relative density (or specific
gravity), with respect to liquid water. The snow depth is the vertical distance from the

snow surface to the ground.

4.1 Remotely Sensed Snow Water Equivalent Estimates

The SWE data is available through the European Space Agency (ESA) Data User
Element (DUE) Global Snow Monitoring for Climate Research or, more simply, the
GlobSnow project. This SWE information was derived from AMSR-E (Advanced
Microwave Scanning Radiometer — EOS) sensor data in combination with ECMWF
(European Centre for Medium-Range Weather Forecasts) weather station observations.
SWE estimates are available in the northern hemisphere for the years 2003 to 2008. By
August 2010, the derived SWE dataset will provide daily SWE data for the last 30 years

(Luojus et al. 2009).

The SWE data is saved in HDF4-format. Each day provides two files of information: (1)

the SWE estimate and (2) its error estimate (i.e. data variance). The sensor used to obtain
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the GlobSnow SWE data, AMSR-E, is one of the six sensors aboard NASA’s Aqua
satellite. The AMSR-E passive microwave observations, along with weather station
observations collected by ECMWF, are integrated and used to produce maps pertaining
to SWE estimates. The GlobSnow SWE product encompasses the entire northern
hemisphere (except Greenland) in a single data field, projected in Equal-Area Scalable
Earth Grid (EASE-Grid). This projection changes the shape of the land but the land mass
areas are accurate and can be used for appropriate calculations and data processing. The
SWE nominal resolution is 25 km x 25 km per pixel, providing a pixel area of 625 km?.

The geometry of the pixels can vary (Luojus et al. 2009).

4.2 Snow Water Equivalent Obstacles

Although SWE data availability for North America was a significant accomplishment,
there are potential pitfalls in using the SWE data, particularly for the Upper Humber
Basin. First, the area of one pixel is 625 km? compared to the area of interest:
approximately only 470 km?. Given that the resolution of the SWE product is larger than
the area of interest, data accuracy may be a problem (i.e. information is averaged over
such a large area and there may be large SWE derivation errors with only one pixel).
Second, the Upper Humber Basin is a mountainous region. Mountainous regions provide
less accurate SWE information because the data is obtained using radar. Difficulties with
radar arise when differentiating elevations from topographic variability. Third, the Upper
Humber Basin is located in the boreal forest with a dense forest canopy. According to

GlobSnow SWE Product Guide from 2009, there are low correlations over the boreal
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forest, especially in more remote areas with a sparse climate station observing network.
Fourth, Newfoundland and Labrador is subject to significantly higher than average
annual precipitation compared to the rest of Canada. During the spring months, the snow
is frequently considered “wet snow” as opposed to “dry snow”. The AMSR-E sensor has
difficulties with the higher reflectance of wet snow (Luojus et al. 2009). These
difficulties relate directly to SWE data accuracy. At times, the SWE estimates cannot be

calculated at all.

4.3 Snow Water Equivalent Data Processing and Analysis

The SWE data was obtained in a similar manner as the snow cover area data from remote
sensing: using PCI Geomatica, EASI script, and importing the individual text files into

Microsoft Excel with a VB script.

From preliminary data analysis it was clear that the SWE data was not feasible for further
analysis. The obstacles of the remotely sensed data described earlier, for the Upper
Humber Basin in particular, were too much to overcome at this point in time. First, many
days within the snowmelt period (March 1% to June 30™) provided void SWE estimates of
zero or missing data. This does not mean there was no snow cover; this means that there
was an error in determining the SWE for that region. Again only one pixel: size 625 km?
was observed for the Upper Humber River. Second, for the few SWE estimates that were
not zero (approximately six points per year), the SWE variance was large. For example,

on April 14™ 2008, the SWE estimate was 197.36 mm with a variance of 1,796.03 mm.
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This is a large variance and means that this SWE information is not useable. All SWE
estimates obtained from 2003 to 2008 for the Upper Humber River basin demonstrated

these large variances and were therefore not useable.

4.4 Potential Improvement of Daily Flow Predictions

Technical advances may bring more accurate SWE data. It could then be used to test for
improvements in the daily flow predictions. In slightly modifying the Rango-Martinec
SRM, the change in SWE from one day to the next, in mm, is used as an input, see
Equation [4.2].

1

[4.2] Qpuq = kQ,, + (1 — K)[c,ASWE + ¢, P,] 2220

86400

The change in SWE (mm) replaces the product of snow covered area in percent, the
cumulative degree days, and the degree-day factor. This SWE difference between
adjacent time periods will indicate the actual amount of melted snow rather than the

snowpack’s entire SNOw reserves.

By comparing the change in SWE to the product of: S, X T, X a,, it would provide a
good indication of whether or not the SWE data will impact the flow predictions. As the
SWE data is currently not accurate or precise enough for proper analysis, the pursuit of
flow prediction improvement will have to be investigated upon appropriate technical

advancements.
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- Chapter 5 -

Discussion

This research focused on a sub-watershed of the Humber River Basin: the Upper Humber
River basin above Black Brook, NL. The main objective was to use satellite snow data to
model more accurate flow rates, which would help forecast floods in the area. This
chapter will discuss the methodology of this model, practical results, and potential

applications for this research.

5.1 Methodology and Results Summary

The daily flow prediction analysis is broken down into two sections: 1) remote sensing
technology and 2) SRM model analysis. Figure 5.1 shows how the daily flow prediction

analysis is divided into these two sections.
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REMOTE SENSING MODELING

» Basin Characteristics » Choose a Showmelt

» Snow Data Model
» Collection » Remotely Sensed Data
» Validation » Calibrate Parameters
» Management » Design of Experiments

v

» Snow Cover Depletion Validate Model

Curves » Measure Model efficiency
» Extract SWE data

Figure 5.1: Daily Flow Prediction Analysis Divided into Two Sections

The remote sensing section involved four steps: (1) understanding the study area and
remote sensing in that area, (2) collecting, validating, and managing the MODIS snow
cover data, (3) developing and interpreting snow cover depletion curves, and (4)

extracting and assessing SWE data.

Remote sensing is currently the best way to monitor daily snow cover data, based on
three main reasons: it is easily accessible, it is reasonably accurate, and it is able to cover
large areas within acceptable time periods. The MODIS sensor on Terra was chosen
based on its reliability, daily temporal coverage, and ease of access. One major
disadvantage was cloud cover. The study area is an extremely cloudy region and given
that the MODIS sensor is an optical sensor, cloud cover can significantly affect snow
data interpretation. The possibility of misclassifying snow and cloud was a major

obstacle. The snow cover data was extracted and sifted through using a 20% cloud cover
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threshold. This threshold was used to ensure minimal snow misclassification on account

of high cloud cover.

Conventional snow depletion curves were plotted from the percent snow covered area
over time. Snowmelt forecasts are most accurately predicted in situations where the snow
accumulation and melt periods are well-defined, with minimal disruptions in the
accumulation and melt patterns. Ideally, there is relatively little precipitation during the
melt (forecast) period (Maidment 1993). Of course, in reality, no depletion curve is
perfect. There are many internal processes taking place within a snowpack as it
consolidates. The position and shape of each individual crystal changes over time from
moisture transport, overlying weight, and wind redistribution. A snowpack’s
accumulation and melt periods are determined by the snowpack’s degree of
consolidation. Non-homogeneous snowpacks can develop from rainfall between periods
of snow accumulation. The rain can freeze into ice overtop of a snowpack creating layers
of snow and ice (Watt 1989). Over such a relatively large study area: 470 km?, it is
impossible to determine this kind of information on the snowpack, and it must be

assumed that there is some closeness to a homogenous snowpack.

The second section, on modeling the flows, involved: choosing a snowmelt runoff model,
calibrating its parameters, and validating the model. Table 5.1 provides a results
summary from the model analysis. These results represent the ability of the SRM model

to predict in both the calibration and validation stages for the Upper Humber Basin.
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Table 5.1: Results Summary for Daily Flow Predictions using MODIS Snow Cover Data

Optimal Parameter Settings:
a=1.0mmecd?

k=0.9

cs=0.2

¢, =0.5

Calibration Stage 2000 to 2007

NaSh-SUtC“ffe, Eovera" 0.85

Highest Eseasonat Observed in 2001 and 2005 | 0.91

Lowest Egeasonal ObServed in 2007 0.64

Difference in Volume, Dy overall 2.97%

Highest Dy seasonal ObServed in 2002 6.40%

Lowest Dy seasonal ObServed in 2004 0.99%

(Qo/Qm)overall 1.06 (modeled flows 6% underestimated)

Lowest (Qo/Qm)seasonal Observed in 2000 1.02

Validation Stage 2008 to 2009

Nash-Sutcliffe, Eqveran 0.81
Highest Egeasonat Observed in 2008 0.86
Lowest Egeasonal Observed in 2009 0.75
Difference in Volume, Dy overall 4.35%
Highest Dy seasonal ObServed in 2009 6.20%
Lowest Dy seasonal ObServed in 2008 2.50%
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(Qo/Qm)overall 1.07 (modeled flows 7% underestimated)

From the results, it was observed that the modeled flows fit well with observed flows and
that the forecasting period shows promise. The average Nash-Sutcliffe value during the
calibration stage was a respectable E = 0.85 and for forecasting (validation stage)
maintained its very good fit at E = 0.81. The difference in volume between observed and
modeled flows during the validation stage was on average 4.35%. This is a fairly small
difference and acceptable for forecasting purposes. Over the 10 year period the difference
in volume was always below 6.5%. This minimal change in volume prediction provides
considerable security in future predictions. The ratio of observed flow to modeled flow
was 1.06 for the calibration stage and 1.07 for the validation stage. The modeled flows
are rather consistent with flow underestimation by about 6% to 7%. Also, the small
variability of Q./Qn over the 10 years shows great promise for future predictions,

regarding the user’s expectations for accurate flow prediction.

One of the main drawbacks of the SRM model is that with daily flow predictions there is
a one-day lag in the modeled flow rates. This one-day lag is visible from the data set and
visually from the plotted ‘observed and modeled flows’ over ‘time’. The modeled flow
lag is extremely difficult to adjust for; if the modeled flows were too far ahead of the

observed flows one could simply change the time step inputs. A one-day lag means that

88




the next day’s flow information is not being ‘transferred’ (or calculated) quickly enough.
One method that may mitigate the lag would be to predict weekly or monthly flows to
average out the lag, but this is ineffective for flood forecasting purposes. A daily flow (or
smaller time step, for example: 6-hr or hourly) is a necessary prediction time-step when
predicting floods. This allows for proper flood management and effective residential
evacuations, if necessary. Although hourly data is collected by the WRMD for the Upper
Humber Basin, the information is not conveniently available or reliable enough for

proper analysis (i.e., missing data).

No model is perfect and every model experiences some uncertainties in its prediction
power. Hydrological processes exhibit substantial variability and cannot be completely
accounted for by physical laws. Variability, particularly in flow prediction, is often
caused by the natural randomness of driving variables such as precipitation. An
incomplete understanding of predicting system outputs from system inputs and errors in
parameter estimation can also be a source of flow prediction variability (Maidment
1993). These areas of variability are most likely present in the SRM model applied to the
Upper Humber River, NL. There is no way to forecast the exact flow values for any river,

the best that can be done is to make close estimates that will aid in flood mitigation.

An ancillary objective was added when snow water equivalent data become available to

the study region in January 2010. This SWE data was also obtained via satellite and was

processed using the same GIS software used for the MODIS/Terra snow cover data. A
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simple modification/substitution to Martinec and Rango’s SRM model enables a test on
the SWE data to conclude whether or not the new data were useful for the Upper Humber
Basin, in terms of improved flow predictions. However, the analysis was unable to
proceed past the point of preliminary data retrieval and analysis. The SWE estimates
were found to be unreliable for the Upper Humber region. Two reasons why the SWE
data are unreliable: (1) many zero value estimates leaving only a few data points per year
and (2) for the few SWE estimates retrieved, the data had extremely high variances
(many times larger than the estimate itself). Although remote sensing has been
successfully used for estimation of snow areal extent, estimation of catchment snow

water storage is much more difficult (Maidment, 1993).

Looking to the future, in fall 2010, the WRMD has plans to install a SWE sensor within
the Humber River Basin. The readings from an automated SWE monitoring station will
help provide added information used as an input for the adapted Martinec-Rango SRM
model, Equation [4.2] (adapted for SWE data). The SWE sensor will also be used to
improve the GlobSnow SWE product through regression analysis (of remotely sensed
SWE estimates with ground sensor SWE data). This added SWE information should help
close the gap created between actual SWE and the GlobSnow SWE estimates for the

Upper Humber Basin, Newfoundland and Labrador.
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5.2 Applications

The methodology developed from this research has a number of promising hydrological
applications. The most pertinent hydrological applications are: daily flow predictions (not
particularly for the Upper Humber Basin but more likely for larger basins), volume
predictions, summer reservoir level measurements, and MODIS snow cover data

extraction.

Certainly, for daily flow predictions, parameter estimation must be recalibrated
frequently for the Upper Humber River and as historical data is accumulated over time, a
better estimate, fit, and understanding of the basin’s flows is expected. This SRM method
is also a promising model for other basins with similar goals. The SRM model parameters
are set to the particular basin being analysed, but the main steps taken to forecast the
daily flow rates remain the same. Two essential categories of information necessary to
explore are (1) the individual basin characteristics and (2) the available regional data. A
perfect example to test this developed methodology is on the Exploits River Basin
located in central NL. The Exploits River Basin shows great promise for improved flood
forecasting based on the following reasons:

1. Flat topography, hence more accurate SWE estimates (i.e. decreased variability)

2. Large basin area, approximately 10,000 km?

3. Substantial hourly meteorological data throughout the entire basin

4. Extensive snow sampling records from Abitibi (which is now Nalcor Energy)
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This research can also help predict water volumes just as easily as it can predict daily
flows. These water volume forecasts help to assess and categorize periods of low, normal,
and high flows. Summer reservoir levels are often estimated from volume of water and
based on historical data. Quantifying the entire amount of spring runoff, with snowmelt
as a major contributing factor, can help predict future summer flow volumes.
Hydropower companies are especially interested in this information, especially in the
summer, when the lowest flows of the year are routinely observed. The hydropower
companies need to plan for the future and ensure that they have the proper volumes of

water to create sufficient hydropower to meet the expected demands.

Lastly, this research provides the detailed information on MODIS snow cover data
extraction, quality assessment, and interpretation methods. Remote sensing has become
the newest technology with real applicability to many hydrological processes. It is
becoming the standard for many hydrological applications because it is practical for data
mining in remote areas, provides a large variety of information at once, and is capable of
handling large amounts of data efficiently and presents them graphically. This MODIS
snow cover imagery can also be used qualitatively in flood forecasting to declare the end

of the snowmelt season, simply through binary decision making: “snow” or “no snow”.
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- Chapter 6 -

Conclusion and Recommendations

This final chapter provides conclusions on the research performed for this thesis. This
chapter also offers some recommendations for future work on the methodology
developed from this research. Recommendations on the uses of remotely sensed snow
data, improving Martinec and Rango’s SRM for the Upper Humber River, NL, and its

potential application to other basins with similar research objectives are discussed.

6.1 Conclusion

This research tested the combination of remotely sensed data and a snowmelt runoff
model (SRM) for a sub-watershed in western Newfoundland’s Humber Valley. MODIS
Terra images were acquired from 2000 to 2009 and processed to extract snow cover data.
The snow cover data were used to plot conventional depletion curves. The derived snow
cover data obtained from these curves, along with other parameters such as precipitation,
watershed area, discharge, and temperature, were input into Martinec’s snowmelt runoff
model. The four unknown parameters required to run the SRM were optimized using
DOE methodology and the recession coefficient k was further refined through Q.1 vs. Qx

plots. This DOE-aided calibration proved statistically significant for three of the four
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coefficients, and the fourth coefficient (rain runoff coefficient, c¢;) was deemed

statistically non-significant at the 5% level.

The SRM was tested by dividing the 10 years of data into two stages: calibration and
validation. Calibration data, from 2000 to 2007, was used to optimize and define the
empirical coefficients of the model. The Nash-Sutcliffe goodness-of-fit coefficient, E,
was used to calibrate these coefficients for the best fit between modeled flows and
observed ones. The calibration yielded an optimized average Eoveran = 0.85 over years
2000 to 2007. The second stage, validation, was used for the remaining two years 2008 to
2009, to assess the model’s prediction power. The validation provided some mixed
results as Ezps = 0.86 and Ejgoe = 0.75. It is difficult to assess the model’s prediction
power with such a short validation period, but only 10 years of MODIS data are available
at the present time. The one-day lag in the modeled flows is difficult to overcome
because of the small catchment area and the daily time-step. Lastly, SWE estimates were
extracted from AMSR-E/Aqua satellite images, but they were discovered to be unreliable

for the study area and no further analysis was performed.

Quantifying snowmelt has been a challenging aspect of hydrology for daily flow
modeling, with many uncertainties and difficulty measuring vast watershed areas. This
research makes significant contributions to the field of hydrology providing a valuable
methodology in adapting remotely sensed snow data to daily flow simulation. The

collection, validation, and management of remote sensing snow cover images as well as
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the incorporation of these remotely sensed snow cover images into a snowmelt runoff

model, will be helpful to local authorities.

6.2 Recommendations

There are some modifications that may be useful for predicting flow rates on the Upper
Humber Basin, NL. In the coming years, it is recommended to test these applications

further. Recommendations are as follows:

1. To use the MODIS snow cover images for qualitative purposes. This will aid in
flood forecasting and indicate the end of the snowmelt season. Satellite imagery

can be evaluated as being part of one of the two categories: “snow” or “no snow”.

2. To assess a shorter time-step: hourly, 6-hour data, or even half day. For a small
basin, such as the Upper Humber Basin, a daily time-step may not be a short
enough response time-period. The flow rate may change more rapidly with a
sudden change in one or more input parameters. While data is currently being
retrieved hourly by the WRMD, they are not conveniently available or reliable

enough (i.e. missing data) for extensive and accurate studies.

3. To change the degree-day factor (a) every half month throughout the snowmelt

season. Martinec has expressed that ‘a’ should be treated as a time series rather

than a fixed parameter. It is often observed that ‘a’ increases over the snowmelt
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season, especially for heavily forested study areas (Rango and Martinec 1986).
This increase in the degree-day factor over the snowmelt season can also be
considered as an index of decreasing albedo. The change in ‘a’ over time is

coincident with the increase in snow density over time.

To treat the whole watershed as a single unit may be too rough an estimate. It is
recommended that the watershed be divided into smaller elevation zones (50 m or

100 m) to improve modeling accuracy.

To use snow data collected via satellite to quantify snowmelt runoff for future
summer reservoir levels. The purpose of this analysis would be to predict
reservoir levels as being either low, normal, or high by measuring flow volumes
to provide an indication of water availability. This water availability assessment
would be very useful, especially to hydropower companies and government

institutions.

To test a physical-process based model, or process-based model, is recommended.
This process-based model would attempt to mimic the real-world physical
processes of the basin. Representations of surface runoff, subsurface flow,
snowmelt, evapotranspiration, and channel flow are typical processes mimicked
in this model. If modeled accurately, it is likely to capture more of the complex
dynamic inner workings of real-world observations affecting runoff, as opposed

to the simpler degree-day Martinec-Rango SRM model.
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7. To further improve the remotely sensed SWE data over the Upper Humber Basin

of Newfoundland and Labrador, for potential improvement in modeling:

a. To improve the conventional snow depletion curves and upgrade them to
the Type III curve by plotting ‘SWE’ vs. ‘Time’. Continued snow surveys
by the WRMD along with the installation of the SWE monitoring station
will provide useful information. This SWE data can be used in a
regression analysis between remotely sensed SWE data and the collected
ground work snow data. These Type 11l curves will help discern additional
basin snowmelt information. Most important being the actual volume of
water, if all of the snowpack were to melt. This Type Il plot also offers
information on the likelihood that the degree-day factor alters throughout

the season (Rango and van Kawijk 1990).

b. To substitute SWE estimates in Martinec’s adapted SRM, SWE equation
[4.2]. This will provide a more accurate snowmelt estimate compared to

the snow cover data, which does not offer any snow depth measurements.

8. To implement this process for larger basins may also provide more viable and
practical results. It is recommended that the WRMD extend the methodology
developed herein to Newfoundland and Labrador’s Exploits River Basin. This

includes: acquiring MODIS snow cover data, modeling the next day’s flow with
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Martinec and Rango’s SRM, monitoring SWE by satellite and through ground
surveys and/or SWE sensors, and modeling the next day’s flow with the adapted
SRM — SWE equation. There are several reasons why the Exploits River Basin is
likely to produce more valuable flow predictions than the Upper Humber Basin.
First, its basin area is much larger, approximately 10,000 km?. Second, the basin
has flat topography opposed to the mountainous Upper Humber Basin. This flat
terrain will increase the accuracy in the remotely sensed SWE estimates. Third,
more hourly data is available throughout the Exploits River Basin. Fourth,
extensive snow sampling records are available. This ground snow survey data will
provide a better understanding of the amount of snow accumulated and melted
annually over the winter/spring seasons. It may also improve GlobSnow SWE

product estimates through regression modeling: decreasing the data’s variability.

This research was meant to explore the use of satellite snow data to aid in flood
forecasting and was tested on the Upper Humber Basin, NL. A second watershed, of
interest to the WRMD, where this methodology will be tested, is the Exploits River
Basin, NL. Currently, the Newfoundland and Labrador government is not implementing
any type of snow data into their flood forecasting models. The methodology developed
for this research provides a good understanding of the Upper Humber River’s significant

flood forecasting parameters as well as a basis for future work.
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Appendix A

Sequence of Steps to Correct MODIS/Terra Data Download

Website: <https://wist.echo.nasa.gov>
WIST: data search page
Choose discipline/topic first: Cryosphere MODIS/Terra

Choose appropriate data set: MODIS/Terra Snow Cover Daily L3 Global 500m SIN Grid
V005

Create Account | (Forgotten your d?) | (Forgotten your User Name?) -
Choose Keywords for One or More Categories Text Search Help
Pick a (for example. TRMM), then choose from the list of data sefs.

For mulfiple fopics: choose one topic & data sets, then the next fopic & data sefs.

To select/deselect” more than one data set, use Ctri-click for PCs; Apple-click for Macintosh.
MODIS/Terra Snow Cover 8-Day L3 Global 0.05Deg CMG V005
MODIS/Terra Snow Cover 8-Day L3 Global 500m 5IN Grid V005
MODIS/Terra Snow Cover Daily L3 Global 0.05Deg CMG VOOS

MODIS/Terra Snow Cover Monthly L3 Global 0.05Deg CMG V005

Atmosphere: Cryosphere: Land: Oceans: Solar/Other:
! Aircraft O ums © Aircraft © Model ) Aircraft O MISR O Aircraft © MODIS/Aqua ) ACRIM
) Aqua AIRS/AMSU-A/HSB () MERRA © AMSR/AMSRE O MODIStAqua O AMI © Model © AMSR/AMSR-E O MODIS/Tera  C/ Field/in Situ
O AMI O MISR ) ARGON @ MODISfTerra ) AMSR/AMSR-E ) MODIS/Aqua ) AVHRR 7 SeaWinds *) Socioeconomic
) AMSR/AMSR-E ) MLS/Aura 2 AVHRR ) RADAR 2 ARGON ' MODIS/Terra © ESMR 2 SMMR/Terra ' SORCE o
) ASAR © MODEL © ESMR O 8AR ) ASAR ) RADAR ‘O Field/In Situ © SSMA-SMMIS  ©) UARS
) ASTER ©) MODIS/Aqua © Fieldin Situ © SeaWinds ) ASTER O sAR ©) GLASICESat
©) AVHRR *) MODISTerra O GLASACESat O SMMR *) AVHRR * SealWinds
- CALIPSO = MOPITT O Hyperion © SRA ~ Field/In Situ - SMMR
) CERES/Aqua ) NOAA AMSU-AMSU  © Landsat 1-5 © SEMA-SMMIS ) GLAS/CESat ) SRA
) CERES/Tema ) omliAura © Landsat 7 © Tovs © Landsat 1-5 ©) SSMA-SMMIS
*) CERES/TRMM *) SAGE O MISR 7 Landsat 7
) ESMR O SAR
! Field/In Situ ) SealVinds
) FSSP O SMMR
) GLAS/CESat ") SRB
) GOES 0 8SBUV
) HIRDLS/Aura ) SEM/I-SMMIS
) HRIR/MRIRITHIR © TESIAUra
*) Hyperion O TOMS
) Landsat 1-6 0 TOVS
) Landsat 7 © TRMM
) LIGHTNING ) UARS
"By Discipline" not responding? Use the non-javascript version
By Discipline O By Categories/Attributes Try Mel O By Keywords
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WIST: data search page
Choose Search Area: be as specific as possible, use zoom.
Choose a Date/Time Range: this will enhance and decrease search time

Choose Search Area

Click & hold, then drag on the map to select a search region - or - Enter four corners in clockwise order.

Grid size- Use +-DDD.ddd, +-DDD:MM o +-DDD:MM:8S.555 format.
i S‘E Click on "Update LatfLon Comers on Map™ f you type in coordinates.
20°
49.7464 *Lat 49.7764
REirEs -58.2000 °Lon -56.8327
laces center
oads
vers
Political 48.5060 *Lat 48.5352
Zoom -68.1186 °Lon -66.7851
16z [7]
i (Single click on
map to pan)
O Global Search O Stereographic N-pole O Type in Lat/Lon Point
© Equatorial O Stereographic S-pole O XIY Coordinate Range
Orthographic O Global granules only O Orbit Search
Choose a Date/Time Range (not required) 1
Date format: YYYY-MM-DD (1967-05-25) or MM/DD/YYYY (05/25/1967)
Time format: HH:MM (14:30) or HH-MM-S5 (14:30:01)
You may also enter a date without a time or a start date without an end date.
Use the help link for information on default values
Start Date: |2008-10-01] Time (UTC):
End Date: | 2009-06-30 Time (UTC):
Standard Date Range © Julian Date Range O Annually Repeating

WIST: Data Search Page
Choose Addition Options: Set Maximum Data Granules per Data Set to 1000
Begin Search

You may also enter a date without a fime or a start date without an end date.
Use the help link for information on default values.

Start Date: | 2008-10-01 Time (UTC):

End Date: |2009-06-30 Time (UTC):
Standard Date Range © Julian Date Range O Annually Repeating

Choose Additional Options (not required)

Return a maximum of | 1000 data granules per data set (Range: 0 - 2000).
[”] Only return data granules which have browse products

[*] Only display collections which have browse products

Allow searches to run for a maximum of 90 minute(s)

Retumn DEFAULT metadata in search results

Only return data granules which were retrieved during the | pay/Night [+]
Name this query:

(will be used in creating a file name when saving the query)

o« o e

Y

.

Save/Restore Search Criteria (not required)

| RESTORE Search Griteria | [ Choose File | No file chosen

I

Also, please read the NASA Privacy. Security, Notices and the WIST accessibility policy.

Comments, Questions, or Problems?
Created by WIST version WIST-10.20.
Webmaster: Matthew Gechini (Matthew. F.Cechini@echo.nasa.gov

Responsible NASA Official: Andrew E. Mitoheil (Mail Gode 423, NASA/GSFC, Greenbelt, MD 20771)
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WIST Search Results:

Add Show | Show Add
selections | “map time | selections
tocart | coverage |coverage | tofelder ||, ons ceiecrea on all pages
Customize this table | Text-only version™
Select
Data Granule ID Granule

(Local Granule ID)

SC:MOD10A1.005:28108113

(MOD10A1 A2008275 h14v04 005.2008277191620 hdf)

SC:MOD10A1.005:28144961

(MOD10A1 A2008276 h14v04.005.2008279062329 hdf)

SC:MOD10A1.005:28162985

(MOD10A1 A2008277 h14v04 005.2008280062757 hdf)

SC:MOD10A1.005:28260883

(MOD10A1 A2008278 h14v04 005.2008284163516 hdf)

SC:MOD10A1.005:28281949

(MOD10A1 A2008279 h14v04.005.2008285152115 hdf)

SC:MOD10A1.005:28293864

(MOD10A1 A2008280 h14v04 005.2008286124417 hdf)

Aftributes

Aftributes

Aftributes

Aftributes

Aftributes

Aftributes

[

On-line

Information Access

Data®
Mefadata®

Data®
Mefadata®

Data®
Mefadata®

Data®
Mefadata®

Data®
Mefadata®

Data®
Mefadata®

Image
Quicklook

Browse

Browse

Browse

Browse

Browse

Browse

Special Processing Links

Guide Document for this

product at NSIDC
MODIS Snow and lce

Product page at NSIDC

Guide Document for this

product at NSIDC
MODIS Snow and lce

Product page at NSIDC

Guide Document for this

product at NSIDC
MODIS Snow and lce

Product page at NSIDC

Guide Document for this

product at NSIDC
MODIS Snow and lce

Product page at NSIDC

Guide Document for this
product at NSIDC
MODIS Snow and lce
Product page at NSIDC

Guide Document for this
product at NSIDC
MODIS Snow and lce
Dradiuct nana at MQINC.

Data Center

NSIDC_ECS

NSIDC_ECS

NSIDC_ECS

NSIDC_ECS

NSIDC_ECS

NSIDC_ECS

Start Date

Image Quicklook from October 1% 2008

Entire island of Newfoundland almost completely covered in cloud

o

Browse Product

WIST

ecHo
Powersaby )

*Tutorial

+Help for this page®

e GDEM Ordering Tutorial: A quick tutorial for ordering ASTER Global DEM data.

e WIST will be unavailable for system maintenance on Wednesday, March 10th, 2010 from 8:00 am ESTto 12:00 pm EST.

[lsoox  [Juake ce [Land (no snow)
[Mcioud [lwater

[Jundetermined

Data set: MODIS/Terra Snow Cover Daily L3 Global 500m SIN Grid ¥005

Granule:

5C:MOD10A1.005:28108113

Local granule ID: MOD10A1.A2008275.h14v04.005.2008277191620 hdf

Acquired: between 2008-10-01 12:40:00,0002 and 2008-10-01 16:00:00,000Z

Center lat/lon: 44,9211&deg: Lat. -50.5999&deg: Lon

Stop Date

01 Oct 2008, 01 Oct 2008,
12:40:00.000 16:00:00.000

02 Oct 2008, 02 Oct 2008,
13:20:00.000 15:05:00.000

I

03 Oct 2008, 03 Oct 2008,
14:00:00.000 15:45:00.000

04 Oct 2008, 04 Oct 2008,
13:05:00.000 16:25:00.000

05 Oct 2008, 05 Oct 2008,
13:50:00.000 15:35:00.000

06 Oct 2008, 06 Oct 2008,
12:55:00.000 16-15:00.000

v

I

Download browse A non-compressed HDF file containing all the browse products. Have your browser save this directly to a file - you won't be able to display it; it's not a simple

HDF _file:

image - and then use your favorite HDF toolkit to extract information from it

Also, please read the NASA Privacy. Security, Notices and the WIST acce:

ibility policy.
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Appendix B

Plot Comparison for Setting Cloud Cover Threshold

Ten Year Period from 2000 to 2009

‘00 | ‘01 ] ‘02 | ‘03 | ‘04 | ‘05 | ‘06 | ‘07 | ‘08 | ‘09 % Data

5% | 10 | 7 7 9 9 10 | 9 5 10 8 3.1%

10% | 14 | 10 | 11 | 11 | 14 | 14 | 18 | 7 14 | 12 4.6%

2000 | 19 | 14 | 17 | 14 | 21 | 16 | 20 | 15 | 20 | 14 6.2%

Cloud Cover

30% | 21 | 18 | 22 | 19 | 26 | 21 | 25 | 23 | 24 | 17 7.9%

As expected, as the cloud cover threshold increases, the number of snow cover points
also increases. This table represents the amount of snow cover data available for a given

% of acceptable cloud cover.
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Snow Cycle @ 5%

Upper Humber River above Black Brook

Date
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(Notice how in some years the percent snow cover cycle does not complete itself back to

Plot of Snow Cover Data with 5% Cloud Cover Threshold
0% coverage due to a lack of points.)
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Plot of Snow Cover Data with 10% Cloud Cover Threshold

Snow Cycle @ 10%

Upper Humber River above Black Brook
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Plot of Snow Cover Data with 20% Cloud Cover Threshold

Snow Cycle @ 20%

Upper Humber River above Black Brook
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Plot of Snow Cover Data with 30% Cloud Cover Threshold

Snow Cycle @ 30%

Upper Humber River above Black Brook

95 _ 3 4& L 4
90 -

% Snow Cover
Ul
o

Upon cloud cover threshold analysis from overlapping the plots and discovering when the
time and rapidity of decline changed significantly from the previous set threshold, a cloud
cover threshold of 20% was used. This 20% threshold provided the proper balance

between number of data set points and sufficient accuracy.
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Appendix C

EASI Script Used to Automate the Extraction of Snow Cover
Information

! !

I Percent snow cover extraction from multiple NSIDC files [showcov4.eas] !
! !

! !

I This script was written to extract percent snow cover from multiple !

I National Snow & Ice Data Center product files (*.hdf). !
| |
|
|
|
|

I This script assumes that all the input files will all be located !
I within a given directory, all the files will be of the same format !

I and that the output directory does not contain any files. !
!

I Define variables

Ifor input and output directory
local string in_files, out_files

Ifor directory listing of the input directories
local mstring dirlist

Ifor the file format and extension types
local string type, ext

Ifile names
local string waterbit, bn, fn, fn2, fn3, fn4

local $Z

I FOR loop parameters
local integer i, j

local string confirm
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I Clear the EASI window and then show the header information

PRINT @(1 ,1,CLREOS)

print *'-----

print @reverse," Extract Percent Snow Cover " @alloff
print "

print "This script assumes that all the input files will all be located"

print "within a given directory, the files will be of the same format,"”

print "will be clipped to the same extents, and the output directory will"

print ""not contain any files."

print "

print "'- "

I Collect input from user
I- —— N
ASKAGAIN: \
print "
print "
print "Enter the directory that contains the input files (e.g. C:\snow cover\input):"
input ">"in_files
print "
print "Enter the directory for the output files (e.g. C:\snow cover\output):"
input ">" out_files
print "
print "Enter the file format of the files (3-letter file extension; e.g. hdf): "
input ">" type
print """
print "Enter the path and filename of the PIX file containing the watershed bitmaps:"
print "(e.g. C:\snow cover\Watershed_Bitmaps2.pix)"
input ">" waterbit
print "
PRINT @(1 ,1,CLREOS)

I Confirm with user to ensure that the parameters are correct
I If they are correct then continue with the script and if they are not
I then run the script over again.

print "- "
print """

print "*The input directory you specified was:"

print ", in_files

print """

print "The output directory you specified was:"
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print"", out_files

print ™

print "The file format you specified was:"
print"", type

print """

print *The path and filename for the Watershed bitmaps you specified was:"
print ", waterbit

print """

print *'-

print "Are these parameters correct? (Y/N)"

print """

input ">" confirm

if (confirm ~="y" or confirm ~="Y" ) then

I Get the contents of the directory

dirlist = getdirectory(in_files)
let $Z ="\

for i = 1 to f$len(dirlist)

I Extract parts of the filenames

fn =in_files + $Z + dirlist[i]

ext = getfileextension(fn)

bn = getfilebasename(fn)

fn2 = out_files + $Z + bn[10] + bn[11] + bn[12] + bn[13] + "-" + bn[14] + bn[15] +
bn[16]

fn3 = out_files + $Z + "GH" + $Z + bn[10] + bn[11] + bn[12] + bn[13] + "-" +
bn[14] + bn[15] + bn[16]

fnd = out_files + $Z + "UH" + $Z + bn[10] + bn[11] + bn[12] + bn[13] + "-" +
bn[14] + bn[15] + bn[16]

if (ext ~= type) then

print mn
print "Calculate % snow cover for:", bn, ".", ext
print mmn

I Set up the parameters and execute the FEXPORT command

fili = fn
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filo =fn2 + ".pix"
dbiw = 1,1,1240,890
dbic=1

dbib =

dbvs =
dblut =
dbpct =

ftype

="PIX"

foptions =

R Fexport

i Add bitmaps from Watershed_Bitmaps.

pix to the exported PIX file

fili = waterbit
filo =fn2 + ".pix"
dbib =2,3

dbob =

dbiw =

dbow =

report = "OFF"
Monitor = "ON"

Riib

I Compute area of landcover classes under watershed masks

FORj=2TO3BY1

FILE = fn2 + ".pix"
DBIC=1

DBIB =

UNITS = "Square Kilometers"

IF j=2 THEN

REPORT = fn3 + ".txt"
ELSE

REPORT = fn4 + ".txt"
ENDIF
MONITOR = "ON"

r AREAREPORT
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ENDFOR
PRINT @(1,1,CLREQS)
endif
endfor
else
goto ASKAGAIN

endif

PRINT @(1,1,CLREOS)
print - "

print mn

print "The hdf files are stored in the following directory:"

print"", out_files

print "

print "

print @reverse," Percent snow cover extraction EASI Script Finished " @alloff
print mn

print II_ ——— "

return
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Appendix D

Visual Basic Script: to Import, Amalgamate, and Manage all Daily
Individual Output Text Files

A variation of this script was used to grab various data from the text files. This script
searched for snow (pixel 200), lake ice (pixel 100), and cloud (pixel 50).

Sub test()
Dim myDir As String, fn As String, temp As String, delim As String, a() As String
Dimi As Long, e, n As Long, t As Long, X, m As Object
myDir = "C:\Output Complete\Upper Humber River above Black Brook" '<- change here (folder
path)
On Error Resume Next
fn = Dir(myDir & "\200*-*.txt")
ReDim a(1 To 10000, 1 To 100)
Do While fn <>""
temp = CreateObject("Scripting.FileSystemObject™).OpenTextFile(myDir & "\" & fn).ReadAll
x = Split(temp, vbCrLf)
With CreateObject(""VBScript.RegExp")
Pattern = ""Pixel"
.IgnoreCase = True
For Each e In x
If .test(e) Then flg = True
If flg Then
If (InStr(e, "200™) = 1) + (InStr(e, "100™) = 1) + (InStr(e, "50") = 1) Then
n=n+1:a(n 1) =fn
Pattern = "\d+(\.\d+)?"
.Global = True
t=1
For Each m In .Execute(e)
t=t+ 1:a(n, t) = m.Value
Next
End If
End If
Next
End With
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flg = False
fn = Dir
Loop
If n>0 Then
Sheets(1).Cells(1).Resize(n, 100).Value = a
End If
End Sub
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Appendix E

Type | and Type Il Depletion Curves For All Snowmelt Periods: 2000 to
2009

“Type | Curves from 2000 to 2004’
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“Type | Curves from 2005 to 2009’
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“Type II Curves from 2005 to 2009’
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Appendix F

Performing a Design of Experiments Analysis on Four Factors for Martinec’s
Snowmelt Runoff Model

Preliminary analysis:
DOE 2* Parameter Run Order (with optimum Nash-Sutcliffe E trial parameter combination

highlighted)
Factor 1 Factor 2 Factor 3 Factor 4 Response 1

Std | Run Block Acrecession coefficient, k| B:snow runoff coefficient, cs | Cirain runoff coefficient, cr | D:degree-day factor, a Mash-Sutcliffe, E
1 Block 1 0.20 0.70 0.30 1.00 -2.37
5 2 Block 1 0.20 0.30 0.70 1.00 -0.32
9 3 Block 1 0.20 0.30 0.30 8.00 -52.89
7 4 Block 1 0.20 0.70 0.70 1.00 -2.45
6 5 Block 1 0.80 0.30 0.70 1.00 D.&I
1 6 Block 1 0.20 0.30 0.30 1.00 -0.3
11 7 Block 1 0.20 0.70 0.30 8.00 -331.18
13 ] Block 1 0.20 0.30 0.70 8.00 -53.45
12 9 Block 1 0.60 0.70 0.30 .00 -82.28
16 10 Block 1 0.60 0.70 0.70 .00 -B2.64
14 11 Block 1 0.60 0.30 0.70 .00 -12.76
10 12 Block 1 0.80 0.30 0.30 8.00 -12.62
2 13 Block 1 0.50 0.30 0.30 1.00 0.59
15 14 Block 1 0.20 0.70 0.70 .00 -3326
3 15 Block 1 0.50 0.70 0.70 1.00 0.04
4 16 Block 1 0.80 0.70 0.30 1.00 0.08

Parameter Settings:

Factors Low High
0.2 0.6
Recession Coefficient, k (A)
0.3 0.7
Snow Runoff Coefficient, Cs (B)
0.3 0.7
Rain Runoff Coefficient, Cr (C)
1.0 8.0
Degree-Day Factor, a (D)
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DOE Analysis - Estimating the factor effects and determining which effects appear

important:

Using Design-Expert 7.1.3 the effects were analyzed. Below is the “Half-Normal Plot”

with the effects that appear important. These are factors: A, B, D, AB, AD, BD, and

ABD.

Design-Expert® Software
Nash-Sutcliffe, E

Shapiro-Wilk test

W-value = 0.900

p-value = 0.291

A: recession coefficient, k

B: snow runoff coefficient, cs
C: rain runoff coefficient, cr
D: degree-day factor, a
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Performing ANOVA:
Checking the assumptions of ANOVA: (1) Normality, (2) Constant variance, and (3)

independence:

First, the “Normal Plot of Residuals” looks fairly normal. The data points roughly follow

the straight line.

Design-Expert® Software

Nash-Sutcliffe, E Normal Plot of Residuals

Color points by value of
Nash-Suitcliffe, E:
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Second, the “Residuals vs. Predicted” plot does not show a constant variance, there is a
funnel shape with the data. This means a transformation should be tested. It should be

noted that the lack of points may cause this pattern to look more severe.

Design-Expert® Software

Nash-Sutcliffe, E Residuals vs. Predicted

Color points by value of 200

Nash-Suitcliffe, E:
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©
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Third, the “Residuals vs. Run” plot does not show any pattern, indicating independence.

Design-Expert® Software

Nash-Sutcliffe, E Residuals vs. Run
Color points by value of 200
Nash-Suitcliffe, E:
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Trying a NATURAL LOG TRANSFORM: Note: a constant k = 333 needed to be

added to ensure all responses were greater than zero.

Below is the “Half-Normal Plot” with the effects that appear important. These are the

same factors as above: A, B, D, AB, AD, BD, and ABD.

Design-Expert® Software

Ln(Nash-Sutciiffe, E + 333.00) Half-Normal Plot

Shapiro-Wilk test
W-value = 0.666

p-value = 0.001

A: recession coefficient, k
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Performing ANOVA: Checking the assumptions of ANOVA: (1) Normality, (2)

Constant variance, and (3) independence:

First, the “Normal Plot of Residuals” does not look normal.

Design-Expert® Software

Ln(Nash-Sitcliffe, E + 333.00) Normal Plot of Residuals

Color points by value of
Ln(Nash-Sutcliffe, E + 333.00):
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Second, the “Residuals vs. Predicted” plot does not show a constant variance, there is a

severe funnel shape with the data. This transformation did not help the data.

Design-Expert® Software

Ln(Nash-Sutciiffe, E + 333.00) Residuals vs. Predicted

Color points by value of 200
Ln(Nash-Sutcliffe, E + 333.00): ]
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Third, the “Residuals vs. Run” even seems to show a pattern, something is not right with
this natural log transform.

Design-Expert® Software .
Ln(Nash-Sutcliffe, E + 333.00) Residuals vs. Run
Color points by value of 300
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Trying a POWER TRANSFORM: Note: a constant k = 333 needed to be added to
ensure all responses were greater than zero. Lamda = 1. Below is the “Half-Normal Plot”
with the effects that appear important. These are the same factors as above: A, B, D, AB,

AD, BD, and ABD.

Design-Expert® Software

(Nash-Sutcliffe, E + 333.00)1 Half-Normal Plot

Shapiro-Wilk test
W-value = 0.900

p-value = 0.291

A: recession coefficient, k

8
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Performing ANOVA: Checking the assumptions of ANOVA: (1) Normality, (2)

Constant variance, and (3) independence:
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First, the “Normal Plot of Residuals” looks normal - about as normal as the data with no

transformation earlier.

Design-Expert® Software .
(Nash-Sutcliffe, E + 333.00)"1 Normal Plot of Residuals
Color points by value of
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Second, the “Residuals vs. Predicted” plot does not show a constant variance, there is a
funnel shape with the data. This transformation did not help the data- this residuals vs.

predicted plot looks very similar to the original plot from the data with no transform.

Design-Expert® Software

(Nash-Sutcliffe, E + 333.00)1 Residuals vs. Predicted

Color points by value of 200
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Third, the “Residuals vs. Run” plot does not show any pattern, indicating independence.

Design-Expert® Software
(Nash-Suitcliffe, E + 333.00)*1

Residuals vs. Run

Color points by value of 3.00

(Nash-Suitcliffe, E + 333.00)"1:
333.6

0.4

200 —|

k/\

Internally Studentized Residuals

Run Number

The two transforms: natural log and power, did not improve the data in any way. We will

choose the original no transformation to the data.

The following information provided by Design-Expert shows that the chosen terms to be

added to our model are all significant with p-values much less than 0.05 (0=5%).

Response 1 Nash-Sutcliffe, E
ANOVA for selected factorial model
Analysis of variance table [Partial sum of squares - Type 111]

Source Sum of Squares df
Model 1.817E+005 7
B-snow runoff coefficient,cs  30822.19 1
D-degree-day factor, a 57148.49 1
AB 11077.04 1
AD 20524.14 1
BD 29898.73 1
ABD 10751.10 1
Residual 1.29 8
Cor Total 1.817E+005 15

132

Mean Square
25960.40
30822.19
57148.49
11077.04
20524.14
29898.73
10751.10

0.16

F-Value p-value
1.614E+005
1.916E+005
3.552E+005

68846.90
1.276E+005
1.858E+005

66821.10

< 0.0001
< 0.0001
< 0.0001
< 0.0001
< 0.0001
< 0.0001
< 0.0001



The adjusted R? value is 1.000, which means that 100% of the model’s total variability is
represented by the factors in the model. The “adjusted” part means that it is adjusted for

the number of terms in the model.

Here is the effects list, which provides information on the model variables and their %

contribution in predicting the response variable:

Term Effect SumSqr % Contribtn
Require Intercept
Model A k 73.3163 21501.1 11.8317
Model B-cs -87.7813 30822.2 16.961
Error C-cr -0.32875 0.432306 0.000237892
Model D-a -119.529 57148.5 31.4479
Model AB 52.6238 11077 6.09553
Error AC 0.20125 0.162006 8.91496E-005
Model AD 71.6312 20524.1 11.2941
Error BC -0.15125 0.0915063 5.03545E-005
Model BD -86.4563 29898.7 16.4528
Error CD -0.29875 0.357006 0.000196455
Error ABC 0.08875 0.0315062 1.73374E-005
Model ABD 51.8437 10751.1 5.91617
Error ACD 0.17625 0.124256 6.83763E-005
Error BCD -0.12625 0.0637563 3.50841E-005
Error ABCD 0.07875 0.0248063 1.36505E-005
Lenth's ME 0.631399
Lenth's SME 1.28183

The final equation in coded terms is:

Nash-Sutcliffe = -60.28 + 36.66 A —43.89 B —59.76 D + 26.31 AB + 35.82 AD — 43.23
BD + 25.92 ABD

From this equation the user can conclude that the recession coefficient (factor A), snow
runoff coefficient (factor B), and degree-day factor (factor D), all play significant roles in

the model used to predict the Nash-Sutcliffe model efficiency coefficient (used to assess
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the predictive power of hydrological models). The rain runoff coefficient (factor C) is not
significant for measuring this response. It should, however, be noted that there are three
significant two-factor interactions between factors A and B, factors A and D, and factors
B and D. These interactions can be visualized in the plots to follow.

Interaction plot between factors A and B: recession coefficient and snow runoff
coefficient:

Design-Expert® Software .
Nash-Sutclife, E Interaction

X1 = A: recession coefficient, k B: snow runoff coefficient, cs
X2 = B: snow runoff coefficient, cs 00—

Actual Factors
C: rain runoff coefficient, cr = 0.50
D: degree-day factor, a = 4.50

= B-0.300 '-//_/_/-_

A B+0.700

100 —|

200 —|

Nash-Sutcliffe, E

300 —{

400 —|

020 030 040 050 0.60

A: recession coefficient, k

As the recession coefficient increases from 0.20 to 0.60 the Nash-Sutcliffe coefficient
increases to its desired value of 1.0. A snow runoff coefficient of 0.30 as opposed to 0.70
seems more desirable for a higher predicitive power for the snowmelt runoff model

proposed by Martinec.
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Interaction plot between factors A and D: recession coefficient and degree-day

factor:

Design-Expert® Software

Nash-Sutcliffe, E I nteracti on
X1 = A: recession coefficient, k D: deQree'day factor, a
X2 = D: degree-day factor, a 00—

Actual Factors
B: snow runoff coefficient, cs = 0.50
C: rain runoff coefficient, cr = 0.50

= D-1.000
A D+8.000

100 —]

Nash-Sutcliffe, E

400 —]

0.20 0.30 0.40 0.50 0.60

A: recession coefficient, k

As the recession coefficient increases from 0.20 to 0.60 and the degree-day factor is high
(8.0) the Nash-Sutcliffe coefficient increases at a steep rate to it’s desired value of 1.0. It
is quite obvious that a degree-day factor of 1.0 is much better for predicting the flow
compared to a = 8.0. When ‘a’ is 1.0 the variation of the recession coefficient from 0.20

to 0.60 has very little effect and the Nash-Sutcliffe coefficient stays very close to 1.0.

Interaction plot between factors B and D: snow runoff coefficient and degree-day
factor:
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Design-Expert® Software .
Nash-Sutclife, E Interaction

X1 = B: snow runoff coefficient, cs D: degree-day factor, a
X2 = D: degree-day factor, a !

Actual Factors
A: recession coefficient, k = 0.40
C: rain runoff coefficient, cr = 0.50 o —| - -

= D-1.000
A D+8.000

100 —|

200 —|

Nash-Sutcliffe, E

-300 —{

400 —|

030 0.40 050 0.60 070

B: snow runoff coefficient, cs

As the snow runff coefficient increases from 0.3 to 0.7 and the degree-day factor is set at
8.0 the Nash-Sutcliffe response variable decreases dramatically, which is undesirable.
When ‘a’ is set to 1.0 there is much less variability when the snow runoff coefficient
changes from 0.3 to 0.7. Again it is obvious that a high degree-day factor of 8.0 is

undesirable.

It is assumed (from the sparcity of effects principle) that the effects of three-factor

interactions are negligible (close to zero).

Recommendations: Try another DOE experiment with refined ranges for factors to

assess improvement. The rain runoff coefficient physically seems like an important factor
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and it will be kept for the next trial. It may have been overshadowed by the large effects
that the degree-day factor had on the response. From the DOE analysis it can be
concluded that for predicting flow in the snowmelt season of 2002 from March 1% to June

30™ for the watershed of the Upper Humber River above Black Brook:

e Factor A, recession coefficient: 0.6 was better than 0.2
e Factor B, snow runoff coefficient: 0.3 was better than 0.7

e Factor C, rain runoff coefficient: no conclusion, deemed non-significant in this

model

e Factor D, degree-day factor: 1.0 was much better than 8.0
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Appendix G

Determination of Recession Coefficient k-value from Q. vs. Q; plots for
Calibration Years 2000 to 2007 during Snowmelt Season March 1 to
June 30

Q.. vs. Q
March 1 to June 30 2000
200

180 <

160 y = 0.8925x + 6.7571 S N
R? = 0.8024

140

120
100

Q.. (m?/s)

O T T T T T T T T T 1
0 20 40 60 80 100 120 140 160 180 200

Q, (m3/s)

138



Q. (m?/s)

Q. vs. Q

March 1 to June 30 2001

160

140 y =0.952x + 2.4984 O o OO
R7=0.9124

120 AV Q

100

80

v

60
40

20

0 20 40 60 80 100 120 140 160

Q, (m3/s)

Q. (m?/s)

Q. vs. Q

March 1 to June 30 2002

220

200 <
180 y=0.9366x + 4.4488 O

o R? = 0.8669 - o
1
o v O
140 > <><> P
X ©
100
80
60
40
20
O T T T T T T T T T T 1
0 20 40 60 80 100 120 140 160 180 200 220

Q, (m3/s)

139




Q. (m?/s)

200
180
160
140
120
100
80
60
40
20

Q,,vs. Q,

March 1 to June 30 2003

y =0.9006x + 5.9318

R*=0.8162 <©

20 40 60 80 100 120 140 160 180
Q, (m¥/s)

200

Q.. (m?/s)

220
200
180
160
140
120
100
80
60
40
20

Q. vs. Q

March 1 to June 30 2004

&

y=0.8484x + 8.2184

R*=0.7254

20 40 60 80 100 120 140 160 180 200
Q, (m3/s)

220

140




Q.. (m?/s)
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Appendix H

All Qmodeled and Qobserved VS. Time Plots from 2000 to 2009

Calibration Stage 2000 to 2007:

Upper Humber above Black Brook (2000)
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Upper Humber above Black Brook (2007)
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