

Waterford River @ Kilbride

NF02ZM0009

October 2010

Government of Newfoundland & Labrador
Department of Environment and Conservation
Water Resources Management Division
St. John's, NL, A1B 4J6 Canada

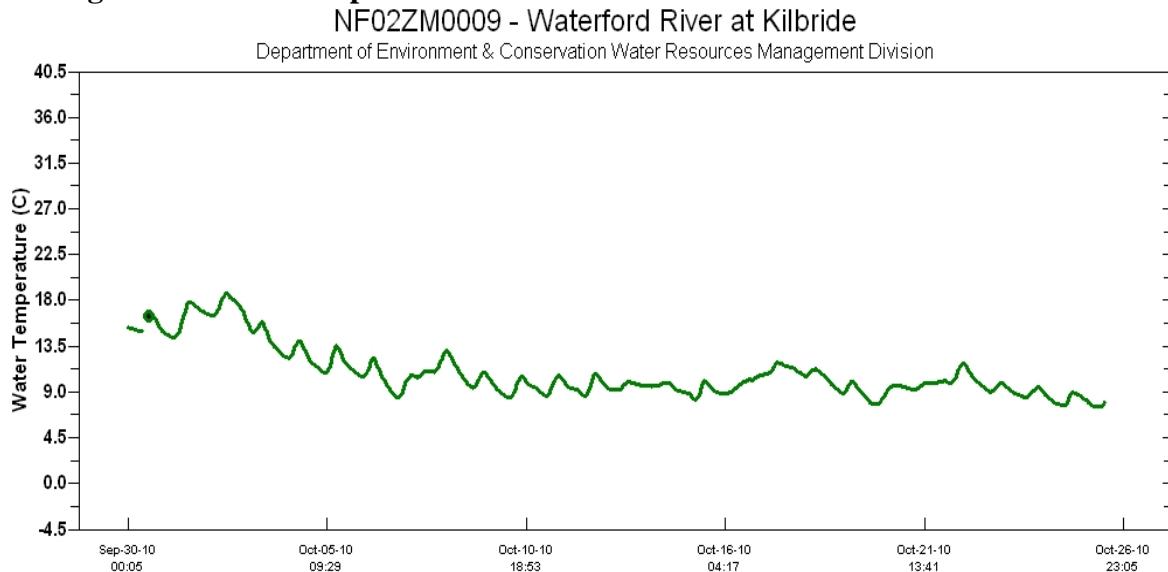
Real Time Water Quality Monthly Report
Waterford River - St. John's NL
October 2010

General

- Data from the Waterford River monitoring station is monitored by the Water Resources Management Division staff.

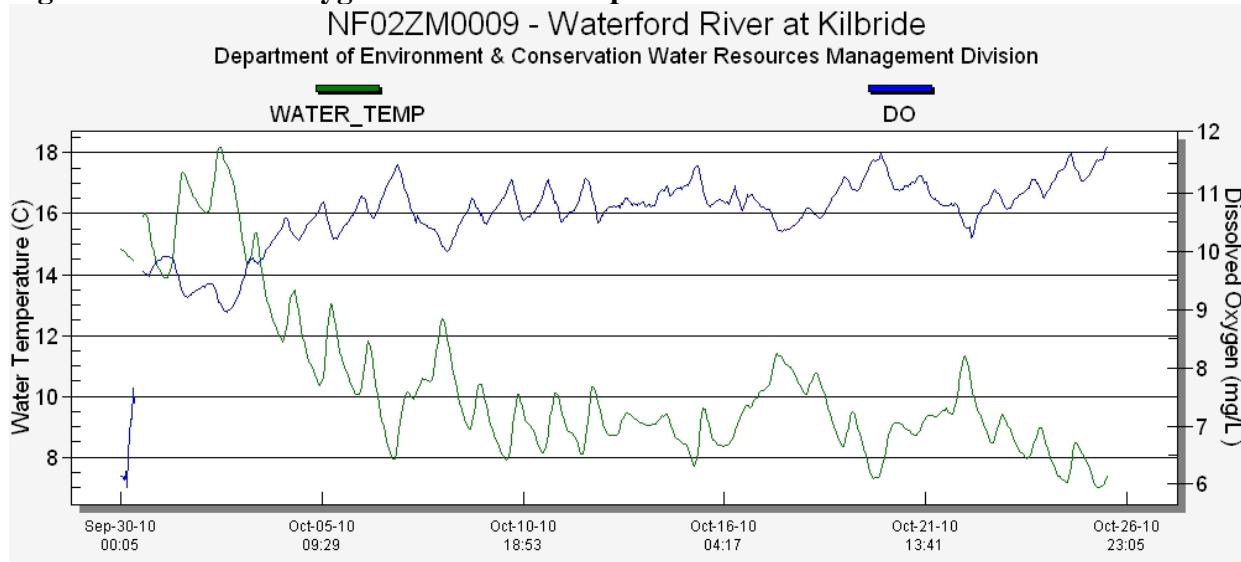
Maintenance and Calibration of Instrumentation

- The following table displays the dates when the Waterford River water quality probe was installed and removed during this deployment period for routine cleaning, maintenance and calibration.
- The instrument at Waterford River does not include a turbidity sensor, thus turbidity will not be recorded at this station until further notice.


Table 1: Table of Water Quality Probe Installation and Removal

Date Installed	Date Removed
September 30, 2010	October 26, 2010

- Water quality readings were taken with a second water quality instrument at the time of installation and removal for QAQC comparison. The QAQC instrument was calibrated prior to each use.


Data Interpretation

- **Water temperatures** were fairly constant during this deployment, ranging between 7.02 and 18.17°C, which is within the expected temperature range for this time of year. Water temperatures are beginning to show a decreasing trend, in response to seasonally decreasing air temperatures. Water temperature data is shown in **Figure 1** below.
- **Figure 1: Water Temperature**

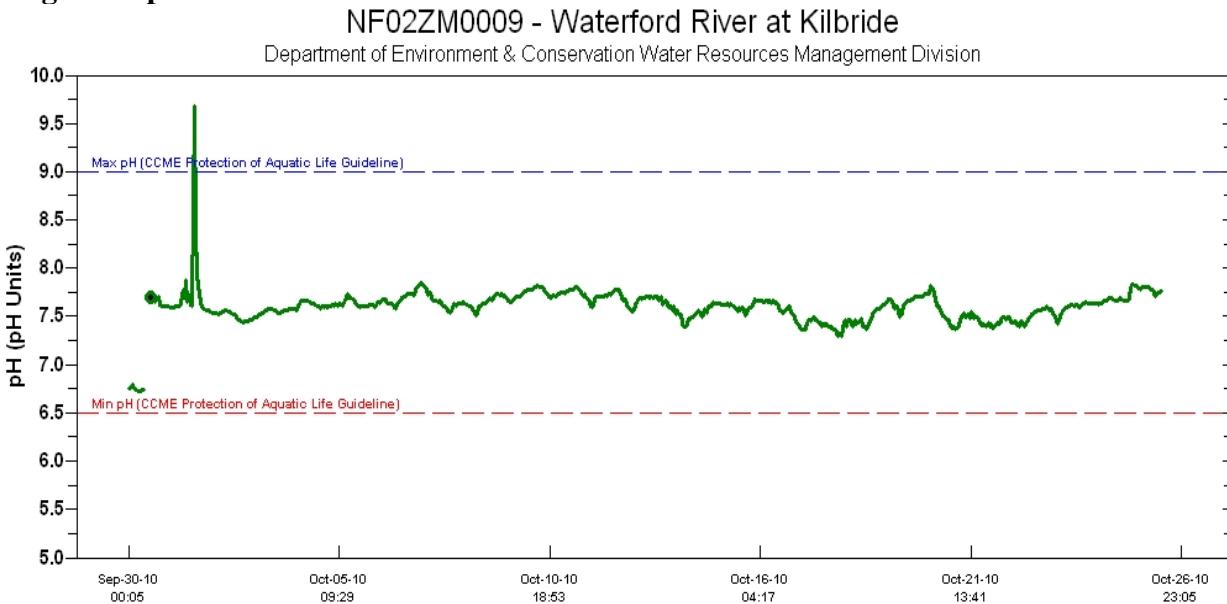

- **Dissolved oxygen (DO)** levels displayed diurnal fluctuations in response to changes in water temperatures from daytime highs to night time lows. Colder water typically holds more dissolved oxygen than warmer water, so as water temperatures decrease, dissolved oxygen levels typically increase. Conversely, as water temperatures increase, dissolved oxygen levels decrease. Dissolved oxygen levels ranged between 8.95 and 11.78 mg/L during this deployment. Dissolved oxygen levels showed an overall increasing trend during this deployment, in response to seasonally decreasing water temperatures. Dissolved oxygen is shown in blue and water temperature is shown in green in **Figure 2**, below.

Figure 2: Dissolved Oxygen and Water Temperature

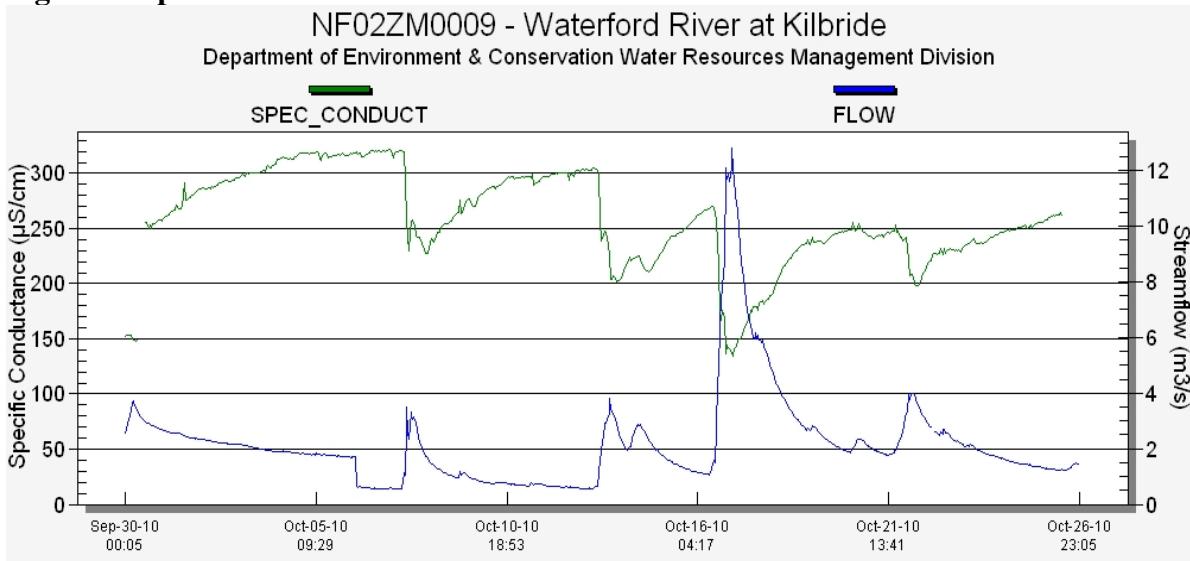

- With the exception of one spike on October 1, 2010, **pH** levels were fairly constant and within the expected range for this station throughout the deployment, ranging from 7.29 to 9.68 units, as seen in **Figure 3** below. Almost all pH values were within the range recommended by the Canadian Water Quality Guidelines for the Protection of Aquatic Life of 6.5 to 9.0 pH units, except for 1 pH reading of 9.68 pH units recorded at 4:05PM on October 1. The pH reading 1 hour prior to this spike was within the normal range at 7.6 pH units, and the 2 consecutive hourly readings after the spike, at 5:05 and 6:05PM were 8.4 and 7.94 pH units respectively. This may be an indication that a water quality event occurred upstream from this station that affected pH levels in Waterford River for a short duration of 2-3 hours. Environment Canada Climate Data, shown below in **Appendix 1**, indicates that there was no significant precipitation on October 1st that could otherwise have affected water quality. (According to EC data there was no precipitation recorded on September 30).

Figure 3: pH Levels

- **Specific conductivity** levels typically share an inverse relationship with water flow, showing decreasing levels as flow increases due to precipitation. This is caused by the dilution effect precipitation has on conductivity, which is most noticeable during the warmer months when road salting operations are not in effect. Conversely, specific conductivity levels typically increase as flow decreases. Specific conductivity ranged between 134-322 $\mu\text{S}/\text{cm}$ during this deployment. **Figure 4** below indicates that specific conductivity (green) decreased in response to increases in flow (blue) during this deployment period. This is particularly noticeable on and immediately after October 16th, when 35 mm of rain fell. Canadian Climate Data for October 2010 is found in Appendix 1 at the end of this report.

Figure 4: Specific Conductance and Flow

APPENDIX 1: Weather information for St. John's, NL provided by Environment Canada for October 2010:

D a y	Max Temp °C	Min Temp °C	Mean Temp °C	Heat Deg Days °C	Cool Deg Days °C	Total Rain mm	Total Snow cm	Total Precip mm	Snow on Grnd cm	Dir of Max Gust 10's Deg	Spd of Max Gust km/h
<u>01</u>	23.1	14.2	18.7	0.0	0.7	T	0.0	T	0	26E	72E
<u>02</u>	22.2	14.3	18.3	0.0	0.3	T	0.0	T	0	22E	72E
<u>03</u>	15.7	7.4	11.6	6.4	0.0	0.0	0.0	0.0	0	29E	56E
<u>04</u>	12.5	6.7	9.6	8.4	0.0	0.0	0.0	0.0	0	26E	32E
<u>05</u>	14.2	7.1	10.7	7.3	0.0	0.0	0.0	0.0	0	27E	44E
<u>06</u>	10.4	2.9	6.7	11.3	0.0	0.0	0.0	0.0	0	31E	37E
<u>07</u>	12.6	2.3	7.5	10.5	0.0	12.2	0.0	12.2	0	16E	70E
<u>08</u>	16.8	5.8	11.3	6.7	0.0	0.6	0.0	0.6	0	26E	54E
<u>09</u>	10.7	5.0	7.9	10.1	0.0	0.2	0.0	0.2	0	25E	44E
<u>10</u>	10.2	5.1	7.7	10.3	0.0	2.6	0.0	2.6	0	24E	50E
<u>11</u>	11.3	5.1	8.2	9.8	0.0	1.8	0.0	1.8	0	24E	48E
<u>12</u>	11.5	5.7	8.6	9.4	0.0	0.0	0.0	0.0	0	26E	39E
<u>13</u>	8.4	6.5	7.5	10.5	0.0	19.8	0.0	19.8	0	16E	32E
<u>14</u>	7.2	5.1	6.2	11.8	0.0	3.4	0.0	3.4	0	34E	39E
<u>15</u>	9.9	1.4	5.7	12.3	0.0	T	0.0	T	0	M	M
<u>16</u>	11.4	7.1	9.3	8.7	0.0	35.2	0.0	35.2	0	14E	65E
<u>17</u>	13.9	9.1	11.5	6.5	0.0	7.8	0.0	7.8	0	22E	41E
<u>18</u>	11.9	5.1	8.5	9.5	0.0	0.2	0.0	0.2	0	23E	56E
<u>19</u>	9.7	2.6	6.2	11.8	0.0	3.1	0.3	3.4	0	25E	63E
<u>20</u>	8.6	2.5	5.6	12.4	0.0	4.6	0.0	4.6	0		<31
<u>21</u>	10.5	5.7	8.1	9.9	0.0	11.8	0.0	11.8	0		<31
<u>22</u>	16.1	6.9	11.5	6.5	0.0	0.6	0.0	0.6	0	23E	61E
<u>23</u>	10.0	4.4	7.2	10.8	0.0	0.8	0.0	0.8	0	23E	46E
<u>24</u>	8.4	3.4	5.9	12.1	0.0	T	0.0	T	0	31E	37E
<u>25</u>	8.5	2.5	5.5	12.5	0.0	0.0	0.0	0.0	0	29E	37E
<u>26</u>	5.5	2.7	4.1	13.9	0.0	3.8	0.0	3.8	0		<31
<u>27</u>	6.4	2.4	4.4	13.6	0.0	1.6	0.0	1.6	0	18E	44E
<u>28</u>	16.7	5.8	11.3	6.7	0.0	21.8	0.0	21.8	0	25E	65E
<u>29</u>	13.2	10.2	11.7	6.3	0.0	0.2	0.0	0.2	0	26E	35E
<u>30</u>	15.7	4.1	9.9	8.1	0.0	10.4	0.0	10.4	0	25E	78E
<u>31</u>	7.4	1.6	4.5	13.5	0.0	T	0.0	T	0	25E	74E
Sum				287.6	1.0	142.5	0.3	142.8			
Avg	12.0	5.5	8.8								
Xtrm	23.1	1.4							25*	78*	

Report prepared by: Joanne Sweeney
 Environmental Scientist
 Water Resources Management Division
 Department of Environment and Conservation
 Confederation Building West Block 4th Floor
 St. John's NL A1B 4J6
 Ph. (709) 729-0351