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ABSTRACT

In 2024, a new bedrock mapping project aimed at refining the geological understanding of the southern segment of the
Torngat orogen in Labrador commenced. This study focuses on the Southeastern Churchill (SECP) and the western Nain
provinces and examines the tectonic, metamorphic and magmatic evolution associated with the Paleoproterozoic Torngat
orogeny. The project area is bounded by the Mistastin Batholith, Hopedale block, Harp Lake Intrusion and Flowers River
Igneous Suite.

Preliminary mapping and earlier surveys indicate a complex geological framework comprising three structural domains.
These domains include Archean to Paleoproterozoic rocks that preserve at least three superimposed deformation events. The
lithological assemblage includes orthogneiss, paragneiss, amphibolite, granitoids, migmatites and mafic intrusions reflecting
a history of high-temperature metamorphism, partial melting and magmatic activity.

Ongoing work will integrate lithogeochemical, isotopic and geochronological data to refine the tectonic boundaries,
reconstruct the structural framework, and constrain the timing and nature of metamorphic and magmatic processes. These
studies will advance mineral exploration strategies and contribute to a deeper understanding of the tectono-magmatic evolu-

tion of the Torngat orogen.

INTRODUCTION

As part of the Newfoundland and Labrador
Government’s, new Labrador-specific funding, a new
1:50 000-scale regional bedrock mapping project was initi-
ated in north-central Labrador. Mapping focused on the tec-
tonic units that record the Torngat orogeny, such as the
Southeastern Churchill Province (SECP) and the western
North Atlantic Craton (Nain Province). The mapping and
related research aim to unravel the complex geological his-
tory of the region and establish a foundational dataset that
supports mineral exploration for base metals, gold, and crit-
ical minerals within the orogenic belt.

The project area was, in part, previously mapped by
Taylor (1972) at 1:250 000 scale and by Thomas and
Morrison (1991) at 1:100 000 scale, providing general con-
text about the lithologies, as well as the structural and meta-
morphic histories of the belt. However, key questions
remain unresolved, including the tectonic evolution of the
boundary between the SECP and the Nain Province and its
role in their Paleoproterozoic amalgamation. Additionally,
the timing of metamorphism and magmatic activity, and the
evolution of the Torngat orogeny, is not well understood.
Recent studies have examined metamorphic, geochemical

and geochronological datasets in the context of the Torngat
orogeny within its northern segment on the Québec side
(e.g., Charette, 2021; Godet, 2021). However, it remains
uncertain whether the timing of orogeny can be consistently
traced along the orogen’s axis into its southern segment.

The project focuses on the southern parts of NTS
13M/09, 10 and 13N/12 map areas, and the northern parts of
NTS 13M/05, 07 and 08 map areas. Mapping in 2024
focused within the central and eastern domains of the project
area, with further work on the western domains planned for
later field seasons. This report focuses on the preliminary
interpretations based on the first field season of mapping.

GEOLOGICAL SETTING

The SECP (Figure 1) comprises a central Archean block
(the Core Zone), which is bounded by the Paleoproterozoic
New Québec Orogen to the west and the Torngat orogen to
the east, separating it from the Superior and North Atlantic
Archean cratons, respectively (Figure 1). In Labrador, the
North Atlantic Craton (NAC) comprises the Hopedale and
Saglek blocks (Bridgewater et al., 1973). The Torngat oro-
gen formed through the oblique collision of the composite
microcontinent now preserved as the Core Zone (lower
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Figure 1. Simplified geological map of eastern Québec and Labrador (modified after Hinchey et al., 2024). ASZ=Abloviak
shear zone;, FSZ=Falcoz shear zone; MSZ=Moonbase shear zone; LPSZ=Lake Pilliamet shear zone; KSZ=Komaktorvik
shear zone; NQO=North Québec Orogen; KKSZ=Kanairiktok Shear Zone; FRIS=Flowers River Igneous Suite. The location
of Figure 3 is outlined.
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plate) with the North Atlantic Craton (the upper plate)
(Figure 1). This orogen is characterized by a doubly-vergent
structure composed of migmatized and intensely deformed
rocks (Rivers et al., 1996; Wardle and Van Kranendonk,
1996; Scott, 1998). In Labrador, the Torngat orogen com-
prises four major tectonic components, which are, from west
to east: 1) the 1870-1860 Ma highly strained, granulite
facies metaplutonic and orthogneiss of the Lac Lomier
Complex (Figures 1 and 2; Van Kranendonk and Wardle,
1996; Campbell, 1997; Thériault and Ermanovics, 1997); 2)
the 1910 and 1885 Ma calc-alkaline metaplutonic Burwell
Domain (Figure 1; Scott and Machado, 1995; Scott, 1998);
3) the migmatized paragneiss and leucogranite of the
Tasiuyak gneiss or Tasiuyak Complex. Here onwards, this
unit is referred to as the Tasiuyak Complex, following
Mathieu et al. (2018) (Figures 1 and 2; Mathieu et al., 2018;
Wardle et al., 2002); and 4) the Torngat foreland, represent-
ed by the westernmost part of the NAC (Figures 1 and 2;
Ryan, 1990; Van Kranendonk, 1996).

The Core Zone comprises Archean gneissic basement
overlain by Archean to Paleoproterozoic supracrustal rocks.
The Core Zone is composed of three distinct lithotectonic
units: the George River, Mistinibi—-Raude and Falcoz River
blocks, which are separated by large-scale shear zones
(Corrigan et al., 2018). These blocks are interpreted as
Archean to earliest Paleoproterozoic microcontinents and
crustal fragments associated with the Manikewan Ocean.
This ocean closed around 1.83—1.80 Ga during the assembly
of the supercontinent Nuna (Hoffman, 1989). Compared to
the highly strained high-grade rocks of the Torngat orogen,
the Core Zone is characterized by less intense deformation
and peak metamorphic conditions generally within the
upper-amphibolite facies (Wardle et al., 2002).

The Lac Lomier Complex, located along the central
axis of the orogen, west of the Tasiuyak Complex (Scott,
1998), predominantly comprises an interfolded assemblage
of granulitic gneisses with minor metasedimentary compo-
nents highly deformed by sinistral shear related to the
Abloviak and Falcoz shear zones. The complex's origin
remains uncertain, with U-Pb zircon crystallization ages
ranging from ~1.85 to 1.82 Ga (Bertrand et al, 1993;
Ermanovics and Van Kranendonk, 1998). Competing inter-
pretations suggest it represents either the roots of a magmat-
ic arc along the Core Zone margin (Ermanovics and Van
Kranendonk, 1998) or an arc formed by eastward subduc-
tion, subsequently interfolded with the Tasiuyak Complex
(Wardle et al., 2002).

The Tasiuyak Complex, similarly to the Lac Lomier
Complex, occurs along the length of Torngat orogen and
consists of garnet biotite-bearing paragneiss and leucocratic
quartzofeldspathic gneiss (Wardle, 1983). The depositional

age of the paragneiss of the Tasiuyak Complex is con-
strained between 1940 and 1895 Ma (Scott, 1995). The
rocks of the Tasiuyak Complex underwent granulite-facies
metamorphism related to the Torngat orogeny between
~1.89-1.73 Ma, locally overprinted by ultra-high tempera-
ture (UHT) metamorphism during the emplacement of the
~1.3 Ga Nain Plutonic Suite (e.g., Tettelaar and Indares,
2007). The regional granulite-facies metamorphism is asso-
ciated with migmatization and with the formation of garnet,
biotite, K-feldspar and sillimanite assemblages. Based on its
juvenile isotopic character and maximum depositional ages
of 1.94 Ga, Wardle and Van Kranendonk (1996) proposed
that the Tasiuyak Complex formed as an accretionary prism
during the eastward subduction of the Southeastern
Churchill Province beneath the NAC.

THE TORNGAT OROGEN

The Torngat orogen evolved through three distinct tec-
tonic events — termed D,, D, and D, by Wardle ef al. (2002)
— over approximately 80 million years. While the model pre-
sented below represents the most up-to-date framework for
the Torngat orogen, it is primarily based on studies conduct-
ed in the northern and central segments of the orogen in
Labrador and Québec. Hence, it does not fully capture the
geologic evolution of the project area, situated in the nar-
rower southern segment of the orogen, where tectonic
events are thought to be superimposed (Wardle et al., 2002).

The oldest event, D,, is characterized by U-Pb zircon
and monazite and Lu—Hf and Sm—Nd garnet metamorphic
ages of ~1.89-1.86 Ga (Bertrand et al., 1993; Van
Kranendonk, 1996; Charette et al., 2021; Godet et al.,
2021) in the Tasiuyak Complex, where it is associated with
peak granulite-facies metamorphism at pressures of 9.5
kbar and 950°C (Van Kranendonk, 1996). Similar meta-
morphic ages have been reported from the Torngat foreland
in the western Nain Craton (Wardle ef al., 2002); however,
the extent of Torngat orogeny-related metamorphism within
the Nain Craton, particularly in the project area, remains
uncertain. The straightened fabric of the Tasiuyak
Complex, which predates Abloviak shear zone (Figure 1),
may also result from D, collision-induced deformation
(Rivers et al., 1996).

The second event, D,, is related to the development of
the sinistral Abloviak shear zone and decompression reac-
tions in the orogen’s axial region. The Abloviak shear zone
formation is constrained by zircon U-Pb TIMS dates
between 1.845 and 1.820 Ga (Bertrand et al., 1993) under
granulite-facies conditions of 7.3-5.0 kbar and 700—-600°C
(Van Kranendonk, 1996). Other sinistral shear zones, such
as the Falcoz and Moonbase shear zones, appear kinemati-
cally linked to the Abloviak shear zone (Figure 1).

171



CURRENT RESEARCH, REPORT 25-1

Témé\;)\gMAlN N
SV
o A

km
LEGEND
MESOPROTEROZOIC SOUTHEASTERN CHURCHILL PROVINCE
Harp Dykes (1273 Ma): Olivine diabase dykes PALEOPROTEROZOIC

ca. 1850 Ma magmatism
Metagranodiorite

- Granite ca. 1880 Ma magmatism
Nain Plutonic Suite (AMGC; ca. 1360-1290 Ma)

Flower River Igneous Complex (ca. 1290-1270 Ma)

E Lac Lomier Complex: Augen metamonzogranite

- Monzogranite to quartz monzonite ca. 1920 Ma magmatism
Natakwanon Batholith: Monzogranite Anorthosite
Ferrodiorite to monzodiorite - Biotite—gabbro
Sango Bay Pluton: Anorthosite to norite El Augen monzogranite
Anorthosite to lesser leucogabbro <1940 Ma event
Pants Lake Pluton: Olivine gabbro Tonalitic orthogneiss
Tasiuyak Complex
Leucogabbro to gabbronorite
4 Pelitic gneiss
Harp Lake Plutonic Suite (ca. 1430) Graphite-rich pelitic gneiss
- Arc Lake Pluton: Quartz monzonite NORTHATLANTIC CRATON
8 cavbro to ferrodiorite ARCHEAN-PALEOPROTEROZOIC
Clinopyroxene anorthosite Mylonitic tonalitic orthogneiss
Olivine anorthosite Orthopyroxene tonalitic orthogneiss
SYMBOLS
Defined contact — — — Inferred contact X Station

Figure 2. Geologic map of the project area showing the three structural domains and the locations of the 2024 field season
sample stations. (Additional unpublished data, A.M. Hinchey, 2025.)
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The D, event is localized along the eastern boundary of
the Torngat orogen, and it is associated with east-verging
ultramylonite zones along the Tasiuyak domain—-NAC con-
tact (Van Kranendonk, 1996), and deformation within the
Komaktorvik shear zone. This event is dated by zircon U—
Pb TIMS between 1.80 and 1.74 Ga (Bertrand et al., 1993).
Metamorphism during D; caused further retrogression of
earlier granulite-facies assemblages. Additionally, D3 pro-
duced a series of west-side-up ultramylonite zones along the
Tasiuyak Complex—NAC contact, constrained by U-Pb zir-
con and monazite dates at ~1.79—1.74 Ga (Van Kranendonk,
1996).

METHODS

Lithological and structural data were recorded at 195
outcrops, and 148 samples were collected for lithogeochem-
ical and petrological analyses (see Figure 2 for outcrop loca-
tions and lithological details). Field data collection was con-
ducted with the GSC field app using a Panasonic ToughPad,
whereas structural measurements were taken using a
Breithaupt compass with a negative 20° declination setting.
Data were compiled and visualized using ArcMap and
ArcGIS Pro, and structural data were analyzed and plotted
using the Stereonet software v. 11.5.1 (Allmendinger et al.,
2012; Cardozo and Allmendinger, 2013).

RESULTS
STRUCTURES AND LITHOLOGIES
The project area has been subdivided into three structur-

al domains (Figure 2) based on the orientation of structures
(Figure 3), deformation styles and lithological differences.

Western Domain

Central Domain

Western Domain

The western domain (Figure 2, Plate 1) is continuous
with similar Churchill Province rocks described by numer-
ous studies focused on the Core Zone (e.g., Hill, 1982;
Thomas and Morrison, 1991; Corrigan et al., 2018). Within
this domain, strain is variable, with fabrics becoming pro-
gressively more mylonitic towards the eastern boundary and
displaying a predominantly dextral sense of shearing. The
regional structure is characterized by a series of regional-
scale, upright, tight to close, periclinal F, folds. These F,
folds deform earlier F, isoclinal recumbent folds, which are
locally preserved in the hinges of the regional F, structures
(Plate 1A) The gneissic foliation S, is a prominent feature in
the orthogneiss and paragneiss and is locally preserved as a
relict foliation within the deformed amphibolitic mafic
boudins (Plate 1B). The S, axial-plane foliation typically
dips moderately to steeply and strikes to the north, although
significant variations are observed due to deflection around
metaplutonic blocks, such as the 12 % 5 km gabbro intrusion
described below. The western domain's predominant litholo-
gies (Figure 2) are amphibolite-facies metaplutonic rocks
derived from a variety of protoliths, including anorthosite,
gabbro, monzogranite, granite, migmatite, paragneiss and
subordinate mafic boudins.

Anorthosite in this domain is medium to coarse grained,
consisting of euhedral to subhedral plagioclase augen, inter-
stitial amphibole, and minor biotite. Anorthosite outcrops in
the eastern part of the western domain exhibit dextral shear
sense indicators (Plate 1C). A kilometre-scale gabbro body
is exposed in the central part of the western domain (Figure
2). This gabbro is medium grained, foliated, and composed
predominantly of biotite and hornblende.

Eastern Domain

Figure 3. Equal-area, lower-hemisphere stereonets displaying structural measurement from each structural domain.
Stereographic projections were generated using Stereonet sofiware v. 11.5.1 (Allmendinger et al., 2012; Cardozo and

Allmendinger, 2013).
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Plate 1. Field photographs illustrating key lithologies and structures in the western domain. A) F, isoclinal recumbent folds
preserved in the hinge of a regional-scale F, fold; B) Sigmoidal S, gneissic foliation in a deformed amphibolitic mafic boudin,
indicating dextral shearing, C) Plagioclase porphyroclasts and S-C fabrics indicate dextral shear in an anorthosite; D)
Paragneiss with layers enriched in hornblende and biotite, locally containing garnet, interlayered with granoblastic quartz,
plagioclase and subordinate alkali feldspar, E) Paragneiss raft enclosed within deformed granodiorite.
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Monzogranite and granite are widespread throughout
the western domain, occurring as medium to coarse grained,
equigranular, granoblastic and undeformed to mylonitic
rocks. Kilometre-scale granite intrusions have been docu-
mented in the northern sector, although these rocks more
commonly represent partial melting products of orthogneiss
or paragneiss. Paragneiss are characterized by centimetre-
scale layers enriched in hornblende and biotite, and locally
garnet, interlayered with granoblastic quartz, plagioclase,
and subordinate alkali feldspar (Plate 1D). Paragneiss also
occur as rafts within metamonzogranite and metagranite
(Plate 1E).

Central Domain

The central domain (Figure 2) is a subvertical, north-
striking D, mylonite zone. The mylonitic schistosity is per-
vasive across all lithotypes and features a strong, shallow-
plunging lineation (L,) oriented to the north or south (Figure
3). D, deformation is dominated by sinistral shear sense
indicators, including sigmoidal porphyroblasts, S—C struc-
tures (Plate 2A), and shear bands. Locally preserved dextral
kinematic indicators, currently interpreted to have formed
during the D, deformation stage, are also observed. The ear-
lier S, foliation is preserved as a gneissic fabric deformed
and transposed by rootless D, folds (Plate 2B).

The central domain primarily comprises steeply dip-
ping, north-trending layers (ranging from 1 cm to 200 m
wide) of orthopyroxene-bearing metatonalite and metagran-
odiorite, amphibolite lenses and layers, metagranite, garnet-
bearing leucogranite, metagabbro, and garnet-biotite pelitic
gneiss. Orthopyroxene-bearing metatonalite and metagran-
odiorite contain pyroxene-rich lenses and layers interlayered
with metagranite (Plate 2C). Amphibolite layers and lenses,
composed of amphibole, plagioclase, garnet and biotite, are
typically associated with the orthopyroxene-bearing meta-
tonalite and are elongated parallel to the dominant D, fabric.
The metagranite exhibits white- to pink-weathering and is
composed of quartz, plagioclase, K-feldspar, biotite and
minor amphibole (Plate 2A). Intense deformation obscures
primary crosscutting relationships: however, when pre-
served, these relationships suggest that the metagranite
intruded the orthopyroxene-bearing metatonalite and meta-
granodiorite. The metagabbro, primarily exposed in the
western part of the central domain, has a mylonitic texture
characterized by fine-grained pyroxene, plagioclase, and
amphibole arranged in centimetre-scale layers. It also fea-
tures boudinaged layers and lenses of pegmatitic clinopy-
roxene, plagioclase, quartz, and minor amphibole (Plate
2D). The garnet-bearing leucogranite, occurring mainly in
the eastern part of the central domain, consists of medium-
grained idioblastic garnet and fine- to medium-grained
quartz and plagioclase (Plate 2E).

The garnet-biotite paragneiss exhibits a spaced S, foli-
ation defined by garnet, biotite and sillimanite layers (0.5-5
cm thick) interlayered with quartzofeldspathic layers (1-20
cm thick). These layers are locally deformed by F, isoclinal
folds (Plate 2A). The paragneiss is locally migmatitic, as
indicated by the presence of foliation-parallel, elongated
leucocratic lenses of quartz, plagioclase, and euhedral gar-
net, surrounded by melanocratic selvedges. Gossanous
zones, containing biotite, white mica, graphite and
pyrrhotite, occur in the paragneiss and can be up to 20 m
wide. In the central domain, mafic lithologies are more com-
mon in the western side, while more evolved igneous rocks
dominate towards the eastern side.

The lithological associations, deformation style, and
predominant granulite-facies metamorphism in the central
domain are comparable to those documented in the Lac
Lomier Complex and Sukaliuk Complex (Lafrance et al.,
2015). Furthermore, the regional-scale shear zone in the
central domain may correlate with shear zones in the north-
ern Torngat orogen, including the Abloviak, Falcoz,
Moonbase and Lake Pilliamet shear zones (Corrigan ef al.,
2018).

Eastern Domain

The eastern domain is characterized by lower strain
compared to the central domain, with strain intensity
decreasing progressively eastward. A comprehensive struc-
tural definition of this domain is currently limited; however,
it is generally characterized by close to tight, metre- to kilo-
metre-scale F, folds having shallow to steep northwest- and
southeast-plunging L, lineations. The axial-plane S, folia-
tion dips between 2 and 29° and trends toward the northwest
(Figure 3). D, structures are deformed and re-oriented near
the Nain Plutonic Suite intrusions, suggesting that signifi-
cant deformation occurred during the ~1.3 Ga magmatic
event. D, mylonites, which are generally dextral, develop in
metatexites, diatexites, and granites and are particularly
common near the inferred boundary with the Nain Province
(Plate 3A).

The eastern domain comprises garnet, (garnet)-bearing
megacrystic granite, mafic dykes, aplites, garnet-bearing
granodiorite and tonalite, garnet-biotite paragneiss, diatex-
ite and metatexite. The garnet-bearing megacrystic granite
(Plate 3B) forms intrusions of variable sizes, mostly occur-
ring in the central part of the mapped area. It consists of pla-
gioclase megacrysts, euhedral to subhedral garnet, and a
matrix of quartz, K-feldspar, biotite and amphibole. Garnet
is observed both as inclusions in K-feldspar and within the
matrix. The megacrystic granite is intruded by mafic dykes
and aplites (Plate 3C), with gradational contacts that suggest
the aplites intruded into the granite, as evidenced by the
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Plate 2. Field photographs illustrating key lithologies and structures in the central domain. A) S-C fabric in mylonitic granite,
indicating sinistral shearing; B) Isoclinal F, folds deforming S, spaced foliation, marked by garnet, biotite and sillimanite lay-
ers, along with quartzofeldspathic layers; C) Metagranodiorite containing pyroxene-rich lenses and layers, interlayered with
metagranite (width of photograph is approximately 30 cm); D) Mylonitic metagabbro with fine-grained layers of pyroxene,
plagioclase and amphibole, and boudinaged layers and lenses of pegmatitic clinopyroxene, plagioclase, quartz and minor
amphibole; E) Garnet-bearing leucogranite with idioblastic garnet and fine- to medium-grained quartz and plagioclase. F)
D; sinistral shearing localized along a brittle-ductile D; shear zone.
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Plate 3. Field photographs illustrating key lithologies and structures in the eastern domain. A) Dextral D, mylonite developed
along a leucocratic vein within a metatexite; B) Garnet-bearing megacrystic granite, featuring plagioclase megacrysts, euhe-
dral to subhedral garnet, and a matrix of quartz, K-feldspar, biotite and amphibole; C) Outcrop displaying crosscutting rela-
tionships between the garnet-bearing megacrystic granite, a mafic dyke and an aplite; D) Paragneiss raft enclosed within a
garnet-bearing granodiorite; E) Banded metatexite composed of garnet-bearing granodiorite, melanosome and garnetite; F)
Garnet—biotite migmatitic paragneiss featuring garnet megablasts and crosscutting leucocratic dykes.
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presence of granite megacrysts within the aplites. The
megacrystic granite also intrudes the diatexites and metatex-
ites, as indicated by mesosome and melanosome rafts pre-
served within it. The garnet-bearing granodiorite and
tonalite are similar to those in the central domain but are
coarser grained and form significantly larger intrusions.
These rocks intrude the garnet-biotite paragneiss, as evi-
denced by paragneiss rafts within the granodiorite (Plate
3D). Layers of granodiorite and tonalite are locally concor-
dant with mesosome and melanosome layers, suggesting
they may represent partial melting products of the garnet—
biotite paragneiss (Plate 3E). Intrusions of granodiorite,
tonalite and megacrystic granite extend for several kilome-
tres parallel to the north-northeast-trending regional fabric
and range from 10 m to 1-2 km in width.

The garnet-biotite paragneiss exhibits compositional
layering, with 1-20-cm wide, fine- to medium-grained
biotite—garnet—sillimanite layers alternating with up to 1-m-
wide, medium- to coarse-grained garnet-bearing tonalitic to
granodioritic leucosome. Gossanous zones, up to 10 m wide,
are mostly hosted in paragneiss, containing biotite, graphite,
and pyrite. The garnet-biotite paragneiss is similar to those
described in the central domain and has been correlated with
the Tasiuyak Complex to the north (Thomas and Morrison,
1991). However, in the northeastern part of the eastern
domain, it features garnet megablasts having cordierite rims,
high modal proportions of fibrous to prismatic sillimanite,
and a higher proportion of concordant and discordant leuco-
some (up to 15-20%) (Plate 3F). Partial melting of the
paragneiss generates metatexites and diatexites displaying a
variety migmatitic textures.

Evidence of high-temperature (HT) metamorphism and
multiple generations of anatectic magmas suggests pro-
longed magmatism and partial melting. Observations from
the eastern domain reveal a complex metamorphic and mag-
matic evolution, consistent with features documented in the
northern Tasiuyak Complex (e.g., Tettelaar and Indares,
2007; Mitchell, 2014; Charette et al., 2021; Godet et al.,
2021). Subvertical, east-west-trending dextral and sinistral
faults and shear zones crosscut D, and D, structures at high
angles across the project area (Plate 2F). These features are
interpreted as part of a regional-scale brittle—ductile defor-
mation event, D;.

ECONOMIC POTENTIAL

The economic potential has been tested by mineral
exploration efforts since the 1950s, mainly focused on the
Ni—Cu—Co potential in mafic magmatic and gneissic rocks
located in the Pants Lake area, part of the Nain Plutonic
Suite. Magmatic sulphide mineralization first identified in
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the Pants Lake area (Thomas and Morrison, 1991) did not
attract exploration interest until 1995, following the discov-
ery of the Voisey's Bay deposit. From 1995 to 2008, explo-
ration was conducted on the SVB Property by operators
including Donner Minerals, Teck Exploration, Commander
Resources and Falconbridge Limited. Efforts encompassed
stream-sediment geochemistry, prospecting, geological
mapping, numerous geophysical surveys (e.g., magnetics,
EM, IP, gravity, UTEM), and diamond drilling with a total
of 55 holes. Exploration efforts after 2014 were led by Teck
Exploration, Falconbridge, Commander Resources and
Fjordland Exploration Inc.

CURRENT AND FUTURE
INVESTIGATIONS

The primary focus of ongoing studies in the region is to
accurately locate the tectonic boundaries between the
Hopedale block and the SECP. This study refines the struc-
tural and kinematic framework necessary for understanding
the Torngat orogen and to support future mineral-explo-
ration efforts in the region. Additionally, we aim to identify
distinct units within the SECP to unravel the characteristics
and timing of magmatic and metamorphic events, essential
for interpreting the tectono-magmatic evolution of the
Torngat orogeny. Characterizing the presence, structure, and
extent of units within the SECP (e.g., Lac Lomier Complex;
Figure 1) is also crucial for establishing correlations with the
better-understood northern sections of the Torngat orogen.
These efforts will provide a robust basis for regional geolog-
ical interpretations and facilitate comparisons across tecton-
ic domains. A deeper understanding of the structural and
metamorphic evolution of the Torngat orogen is essential for
identifying major tectonic lineaments, which play a key role
in determining the mineral prospectivity associated with
related fault systems. Future fieldwork will concentrate on
investigating the characteristics of structural and intrusive
contacts in critical areas defining the main units and tectonic
provinces, such as the central and eastern domains.

SUMMARY

The 2024 mapping results underscore the importance
of field mapping to establish a robust structural and strati-
graphic framework for understanding the Torngat orogen's
architecture between the SECP and the Hopedale block
(NAC). New lithogeochemical data and petrographic stud-
ies, combined with interpretations of the structural frame-
work, will lay the groundwork for future research in the
area. This project aims to develop a foundation for explor-
ing critical minerals and base-metal mineralization.
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