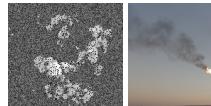


**Current Challenges for Flares:
Black Carbon, NOx, & the Hidden
Implications of Hydrofracturing**

Prof. Matthew Johnson
Canada Research Chair in Energy & Combustion
Generated Pollutant Emissions,
Energy & Emissions Research Lab.,
Mechanical & Aerospace Engineering
Carleton University, Ottawa, ON Canada

© M. Johnson, 2012

 Carleton
UNIVERSITY


*Invited presentation to Canadian
Flaring / Venting Regulators Forum
Winnipeg, MB,
June 14, 2012*

 **Department of
Mechanical & Aerospace
Engineering**

Current Perspectives in 2012

- Growing recognition that role of global flaring in climate change and air quality may be quite significant (e.g. CCAC, EPA)
- Still, there are serious shortcomings in all aspects of our understanding:
 - Raw volume measurements & reporting,
 - Emissions estimates & reporting,
 - Emission factors and models,
 - Measurement technologies & compliance monitoring
 - Fundamental / scientific understanding sufficient to weigh & compare options
- What about flares & hydrofracturing?
 - Is there any science we can trust?

3

Current Perspectives in 2012

- Global flaring still exceeds 139 billion m³ annually (as visible to satellites)
 - Most flaring is poorly measured
 - Near term trends in improved well-completions should result in increased flaring where applicable
- Focussed international attention through new Climate & Clean Air Coalition (CCAC) on short-lived climate forcers:
 - Black carbon
 - Methane
 - NOx (via tropospheric ozone)

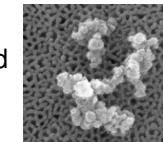
2

(Some of the) Current Challenges in Flares:

1. Black Carbon
2. NOx
3. Hidden Implications of Hydrofracturing?
4. Mitigation Options?

4

Challenges for Flares: 1. Black Carbon

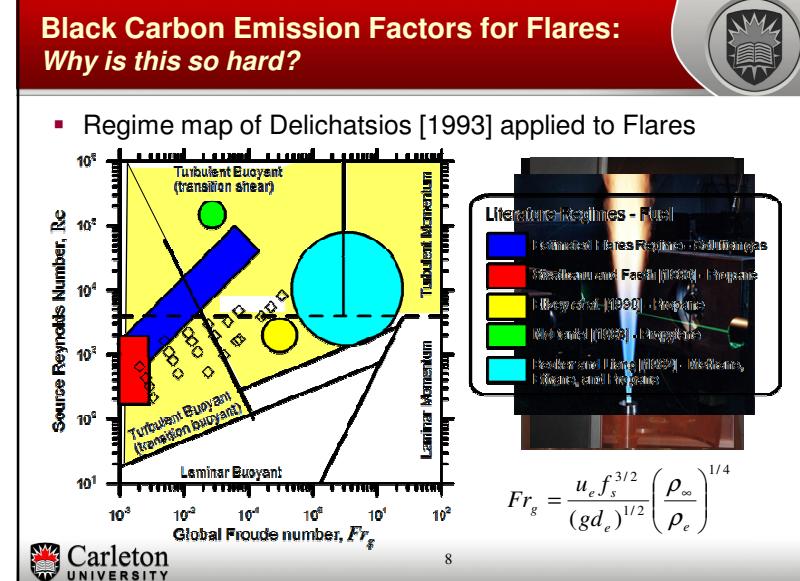

Carleton UNIVERSITY

M&AE Department of Mechanical & Aerospace Engineering 5

Challenges for Flares: 1. Black Carbon

Particulate Matter & Black Carbon

- Climate forcing of Black Carbon:
 - Total effect in atmosphere could be second only to CO₂ (e.g. Ramanthan & Carmichael, 2008)
 - Effects are complex, not well summarized by a “Global Warming Potential” (e.g. U.S. EPA, Report to Congress, March 2012)
 - 100-year timescale: 330-2240
 - 20-year timescale: ~4900 or more
 - Variations are in large part due to the limits of using single-valued GWPs to model black carbon
- Air Quality:
 - PM2.5 linked **directly** to human mortality (& myriad other adverse effects) (e.g. U.S. EPA, 2011)


6

Black Carbon Emission Factors for Flares: Why is this so hard?

Carleton UNIVERSITY

7

- Measuring and modelling soot formation in flames is perhaps the most challenging research problem in the field of combustion science
- Flare operating conditions, gas compositions, operating practices, and design vary widely
- Flares themselves are not amenable to direct measurement (large, unconfined, elevated, turbulent plumes)
- Accurate diagnostics for black carbon in particular have been lacking

2

Black Carbon Emissions from Flares

Objectives (1)

- Controlled Lab-scale Experiments:

- Critical review & assessment of currently available PM / black carbon emission factors for flares
- Controlled lab-scale measurements of flare black carbon emission rates over wide range of conditions
- Gas-phase pollutant emissions measurements including NOx
- Apply novel laser diagnostics to understand formation and emission from flare

9

Black Carbon Emissions from Flares

Objectives (2)

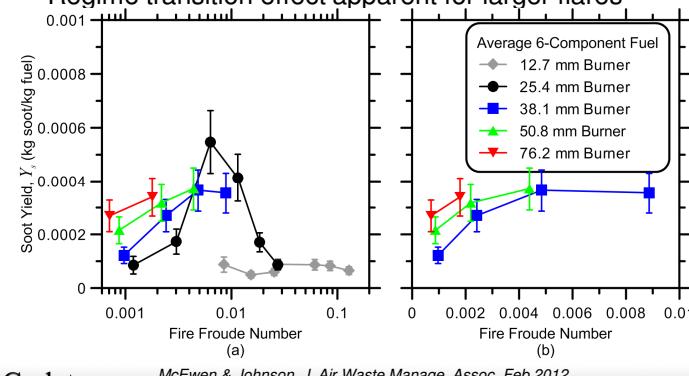
- Field Measurements

- Develop pioneering 2nd generation sky-LOSA technology and integrate new SCMOS camera technology
- Work with World Bank to conduct field measurements
- Research improved emission factor models
- Dissemination via invited consultations, conferences, journal articles

10

Recent Progress

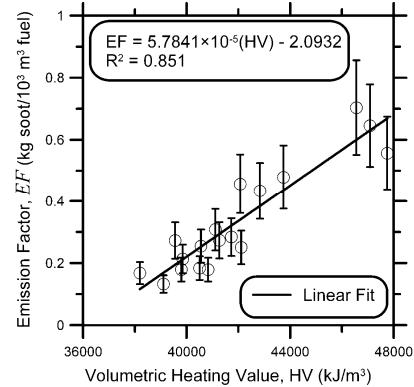
- Peer-reviewed journal article on lab-scale measurements of black carbon emission rates (*McEwen & Johnson, J. Air Waste Manage. Assoc, 2012*)
 - Instrumental in fixing error in existing EPA WebFIRE emission factors
 - Working model for black carbon emission factors from flares operating in regime typical of solution gas flaring
 - Discussion of the role of operating regimes and fuel composition in predicting soot/black carbon emissions
 - Recognition of the critical need for larger scale experiments



11

Published Results

- Critical steps toward predictive models


- Regime transition effect apparent for larger flares

12

“Engineering Attempt” EF model

- In the absence of anything better, can form a simple linear *EF* model based on heating value
- Larger-scale experiments critical to link a useful model with fundamental understanding
- Field measurements will also be essential to success



McEwen & Johnson, J. Air Waste Manage. Assoc, Feb 2012

13

Current Work: Large-scale Flare Experiment

- Partnership with Natural Resources Canada, Environment Canada, CAPP, Univ. of Alberta, & NSERC to conduct larger scale experiments to:
 - Push past soot emission regime transitions to enable robust emission factor models
 - Research issues specific to shale-gas hydrofracturing, especially impact of chlorine laden aerosols in flare stream which can lead to chlorinated hydrocarbons

14

Large-scale Flare Experiment

- Maximum allowable velocity for a given flare diameter between the two experiments shown below, along with Froude number:

	NRC Lab-scale Flare		Large-scale Flare	
Flare Diameter [mm]	Maximum Exit Velocity [m/s]	Froude Number	Maximum Exit Velocity [m/s]	Froude Number
12.7	8.4	566	70.0	39330
25.4	2.5	25	19.0	1449
38.1	1.0	3	8.8	207
50.8	0.6	0.68	4.9	48
76.2	0.3	0.12	2.2	6

- “Typical” UOG flare of 101.6 mm diameter with an exit velocity of 4 m/s corresponds to Froude number of ~16
- Apparatus is specifically designed to facilitate research on flares associated with hydrofracturing operations

15

Ongoing Work: Field measurements in Mexico with World Bank

Field Measurements using Sky-LOSA in Mexico

The sky-LOSA Technique

- In-situ, optical quantification of black carbon mass emission rates in a plume
- **LOSA** = Line of Sight Attenuation at fixed λ
- **SKY**—light used as light source

The Sky-LOSA method
Uses cameras and specially designed software to calculate how much soot is produced by a gas flare.

How fast?
A high-speed movie camera measures how fast the different parts of the smoke plume are moving.

How dark?
A scientific-grade camera takes images of the sky and the smoke, allowing for calculations of the difference in brightness, or how dense the smoke is.

TONIA COWAN/THE GLOBE AND MAIL ■ SOURCE: ENVIRONMENTAL SCIENCE & TECHNOLOGY JOURNAL

Johnson, M.R.; Devillers, R.W.; Thomson, K.A.; *Env. Sci. Technol.* 2011, 45, 345-50. (doi: 10.1021/es1024838)

Johnson, M.R.; Devillers, R.W.; Yang, C.; Thomson, K.A.; *Env. Sci. Technol.* 2010, 44, 8196-8202. (doi: 10.1021/es102230y)

Carleton UNIVERSITY

Sky-LOSA: principle

- Concept: Can we use sky-light to make a quantitative, open-ended, optical measurement of soot in a plume?
- Mathematical basis:

$$\dot{m}_{\text{soot}} = \frac{-\rho_{\text{soot}}\lambda}{6\pi [E(m)]_\lambda (1 + \rho_{\text{sa}})} \int U(y) \frac{1}{N} \sum_{i=1}^N \ln[\tau_\lambda(y)] dy$$

- If we can develop a quantitative system to measure transmissivity, we can make field measurements of soot plumes
 - Need optical properties of soot (Coderre *et al.*, *Appl. Phys. B*, 2011)
 - Need good estimate of plume velocity (see subsequent slides)

Carleton UNIVERSITY

2nd Generation Sky-LOSA System

- **sCMOS camera**
 - Single camera, up to 100fps ICV & LOSA
 - Collection filter 531nm ± 20 nm
 - Camera lens
- **Field deployable computer**
 - Powered from car battery
- **Laser range finder**
 - Remote spatial calibration
- **GPS**
 - Sun position & tracking

Carleton UNIVERSITY

Field Measurements at Punta de Piedra

21

Field Measurements in Poza Rica

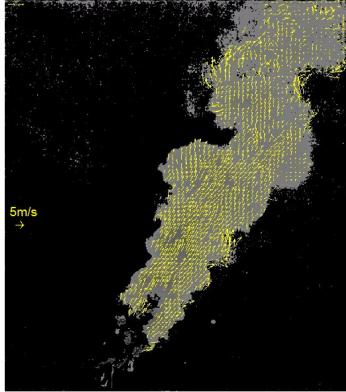
22

Results: *Turbocompressor station*

- **Turbocompressor station**
 - *Poza Rica II - December, 2nd, 2011*
- Set-up at two locations
 - 46 m from the stack
 - 68 m from the stack
- Acquisitions over 1 hour 30 min
 - 10 minutes of acquisition in total
 - > 30,000 frames

23

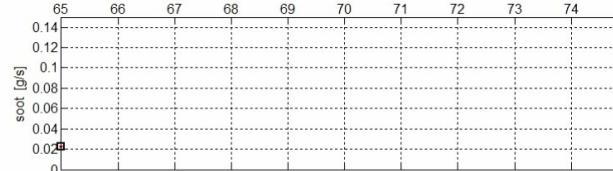
Flare as Apparent to Naked Eye



24

Plume Velocity Measurement

Plume image Velocity field


0.0s

Carleton UNIVERSITY

25

Quantification of Black Carbon Emission Rates

Dec. 12:24pm 65.0s

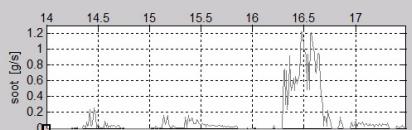
\dot{m}_{soot} 0.022g/s

Carleton UNIVERSITY Canada's Capital University

Natural Resources Canada www.nrcan.gc.ca

NRCan Canada

26


Site 2: Pipeline Terminal

- Punta de Piedra**
 - December, 1st, 2011
 - 2 flares, each with 10m height located in a valley
- Acquisitions over 30min**
 - 3 minutes of total acquisition
 - > 14,400 frames
- Measurements from two locations**
 - Both approx. 60 m away from stack

Carleton UNIVERSITY

Site 2 Results:

Dec. 1st 4:13pm 14s

\dot{m}_{soot} 0.000g/s

Carleton UNIVERSITY

28

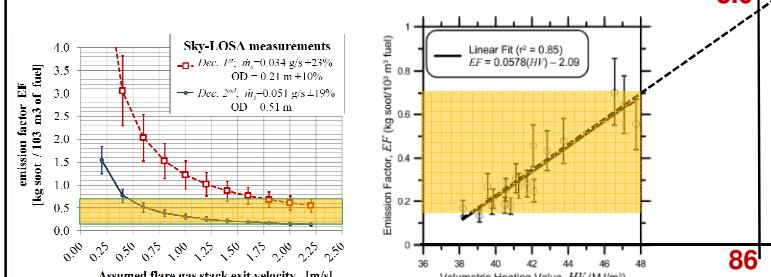
Significantly Improved Uncertainties

Soot properties	$\pm 14\%$	(unchanged)
• $E(m)$	$\pm 3.7\%$	
• ρ_{soot}	$\pm 6\%$	
• ρ_{soot}	$\pm 12\%$	
Spatial scaling	$\pm 2\%$	(was $\pm 5\%$)
Velocity	$\pm 5-10\%$	(was $\pm 21\%$)
• Scaling	$\pm 2\%$	
• Exposure	$\pm 5\%$ to $\pm 10\%$	
Sky interpolation	up to ± 0.0067 g/s	(was $\pm 20\%$)
• Interpolation width	0 to ± 0.005 g/s	
• Conditional average	+0.003 to +0.005 g/s	
TOTAL error (for 0.05 g/s)	$\pm 16\%$ to $\pm 21\%$	(was $\pm 35\%$)

29

Context: Comparing Field & Lab Data

- Pemex did not provide data or access for measurements to determine the mass flow and composition of fuel entering the flare stream
 - To date no direct, *in situ*, evaluation of emission factors as mass of black carbon per mass or volume of fuel have been possible
 - Clear objective moving forward
- Based on recent lab-work and preliminary model publication (*McEwen & Johnson, JAWMA 2012*) can make preliminary estimates for discussion


30

Context: Comparison of Field & Lab Data and EFs

Comparison with EF correlation from McEwen & Johnson, 2012

- Dec. 2nd: mean emission of 0.051 g/s consistent with low heating values and $u_{exit} > 0.5\text{m/s}$
- Dec. 1st: mean emission of 0.034 g/s (smaller stack) suggest low u_{exit} or high heating value (propane $HV = 86 \text{ MJ/m}^3$)

31


Sky-LOSA: Required Next Steps

- Sky-LOSA measurement for known conditions**
 - Fuel gas flow rate
 - Gas composition
- Improving the use of sky-LOSA in the field
 - Better processing software, more automated
- Careful study of direct sun-light scattering
 - Sun light leads to scattering from soot
 - Additional light intensity $\rightarrow \tau$ is overestimated
 - $\rightarrow m_{soot}$ is underestimated
- Modelling required for accurate estimation of bias (sun model, soot model...)

32

Current NOx Emission Factors

Source	Reported Emission Factor	Converted Emission Factor [g NOx/m ³ fuel]	Fuel	Scientific Source
US EPA AP-42 Section 13.5	0.068 lb NOx/10 ⁶ BTU	1.28	80% Propylene, 20% Propane	McDaniel, 1983
US EPA WebFIRE	40 lb NOx/10 ⁶ SCF dry methane	0.64	Landfill waste gas	US EPA, 1998 (Municipal Solid Waste Landfills)
CAPP	1.345 kg/10 ³ m ³	1.345	45 MJ/m ³	US EPA AP-42, Sec. 13.5, 1995

- None of particular relevance to UOG flares
- Less than ideal!

Carleton UNIVERSITY

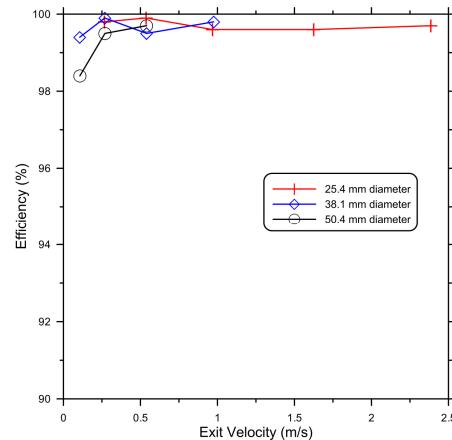
35

Experimental Overview

- Conducted on the NRC lab-scale flare under the following conditions:

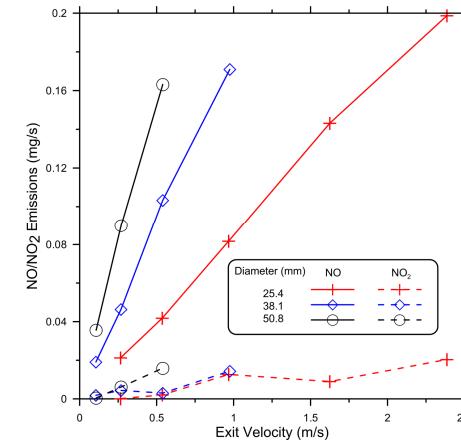
Diameter (mm)	Velocities (m/s)	Froude number
25.4	0.27, 0.54, 0.97, 1.63, 2.39	0.28 - 22.84
38.1	0.11, 0.27, 0.54, 0.98	0.03 - 2.55
50.8	0.11, 0.27, 0.54	0.02 - 0.58

- Fuel mixture: 85.24% methane, 7.06% ethane, 3.11% propane, 1.44% butane, 1.91% CO₂, 1.24% N₂
- NOx emission factor calculated using the following equation:

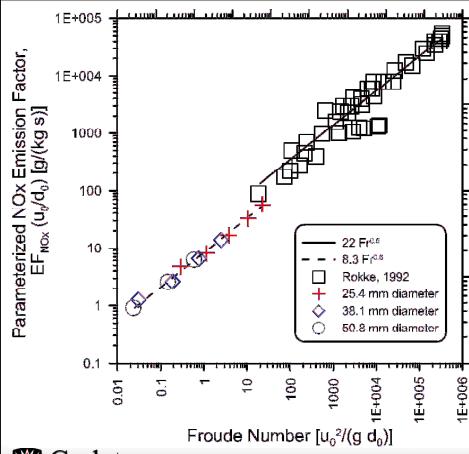

$$FF_{NOx} = \frac{\frac{\partial NOx}{\partial fuel}}{m_{NOx} + m_{NOx}}$$

- Flare efficiency calculated as outlined previously from gas phase composition measurements

Carleton UNIVERSITY


36

Experimental Results - Efficiency


37

Experimental Results – NO and NO₂

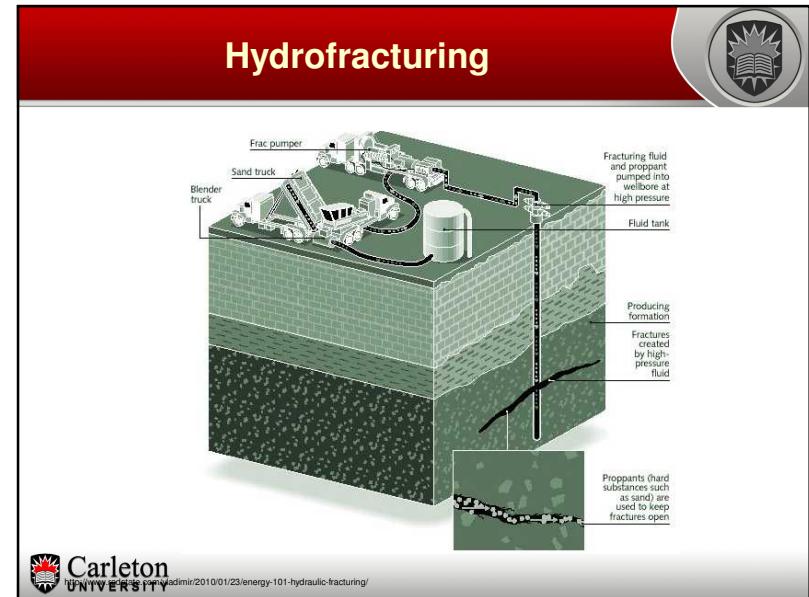
38

Scaling Based on Theory of NOx Formation

39

Preliminary Thoughts: NOx

- “Typical” NOx emissions might be lower than predicted by current emission factors (AP-42, WebFIRE, CAPP), especially at low Froude numbers
 - But beware influence of regimes / operating conditions
- Need to improve experiment and rigorously quantify and refine uncertainties
- Successful application of formation theory to predict preliminary results very encouraging for future development of a robust emissions model
- Planned experiments on new larger-scale lab-flare (Froude and Reynolds more relevant to UOG flaring) will provide badly needed data



40

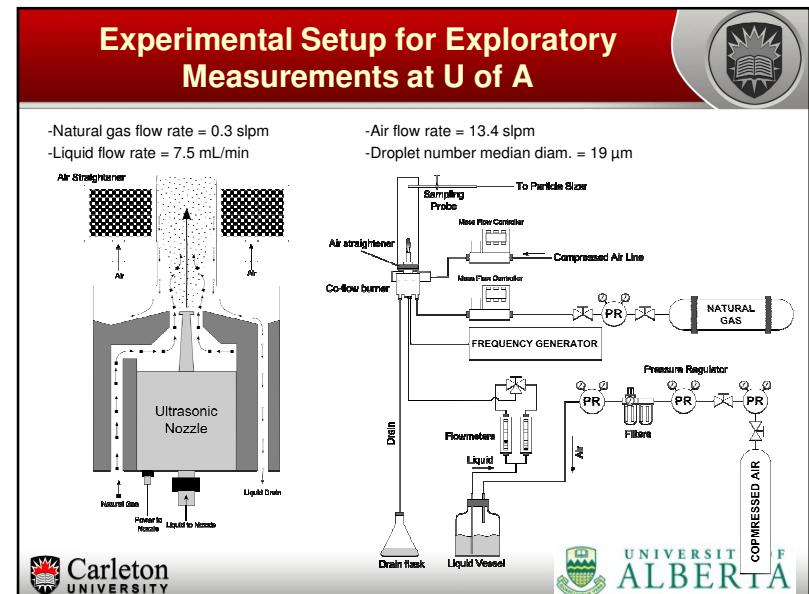
Challenges for Flares: 3. Hidden Implications of Hydrofracturing?

Carleton UNIVERSITY

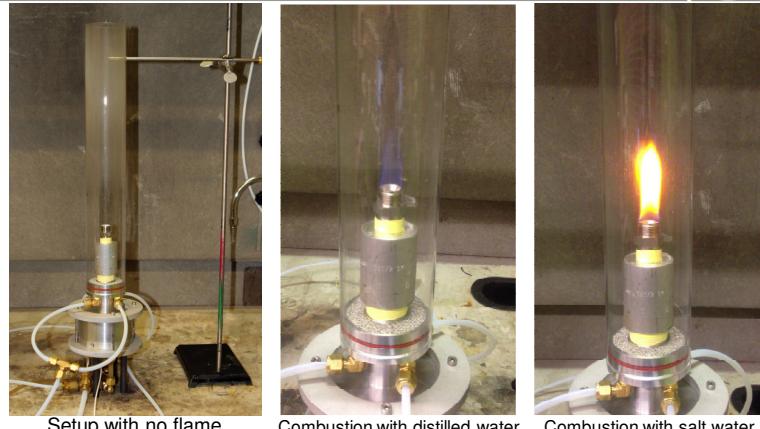
M&AE Department of Mechanical & Aerospace Engineering 41

Hydrofracturing Fluids

Additive


3 billion m³ only in US (2005-2009)

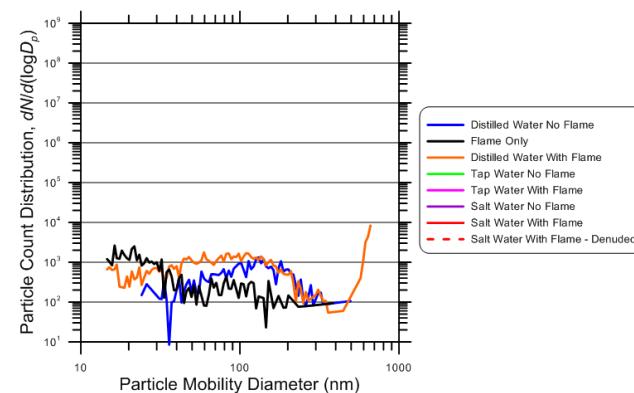
- Sodium chloride
- Hydrochloric acid
- Hydrocarbons
- Polymers
- etc.


US DOE, GWPC: Modern Gas Shale Development in the United States: A Primer (2009)

- BC Oil & Gas Commission is a Global Leader (fracfocus.ca)

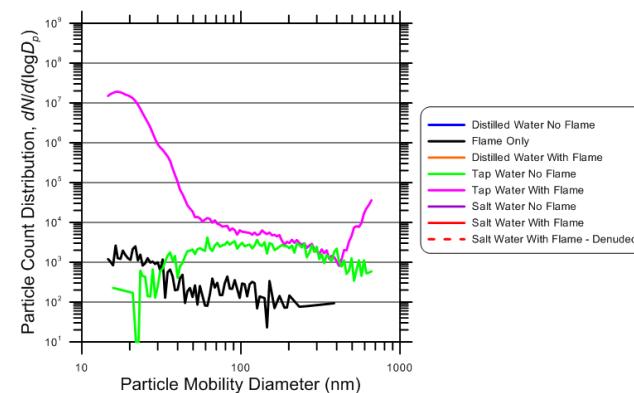
Carleton UNIVERSITY

Exploratory Measurements at U of A

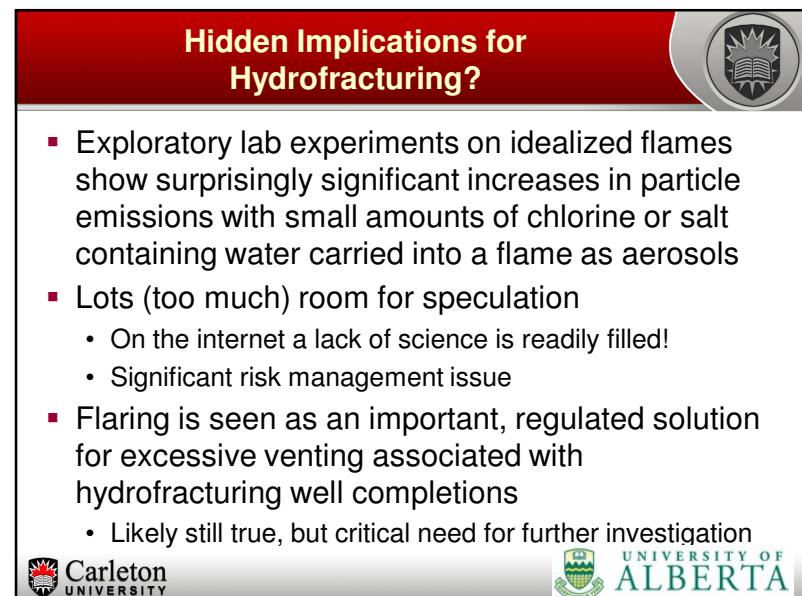
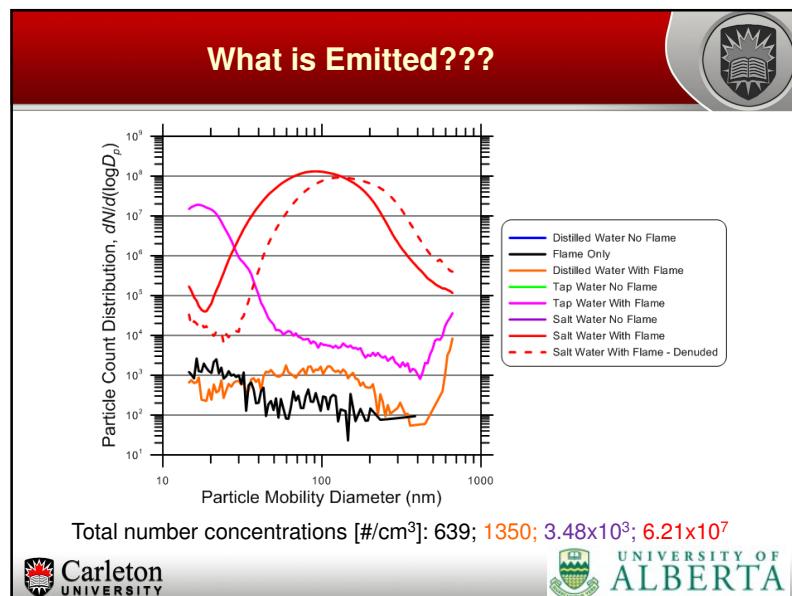
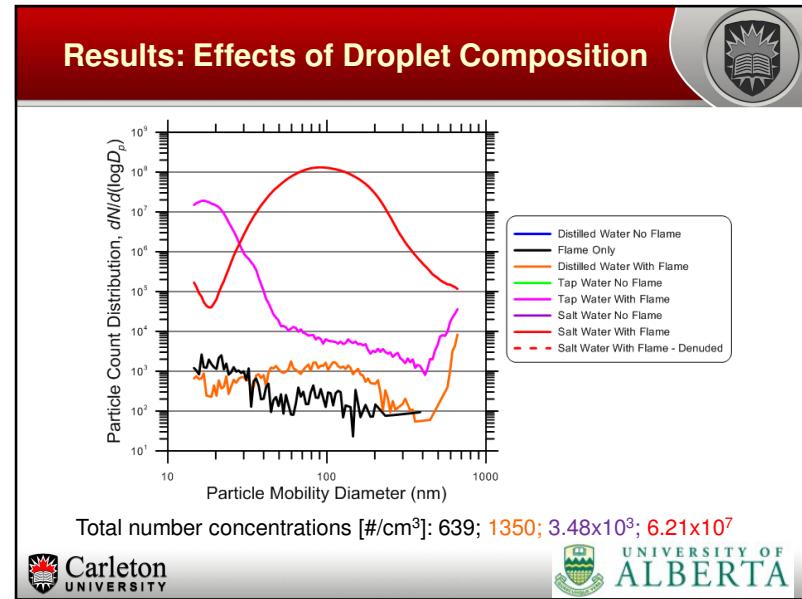
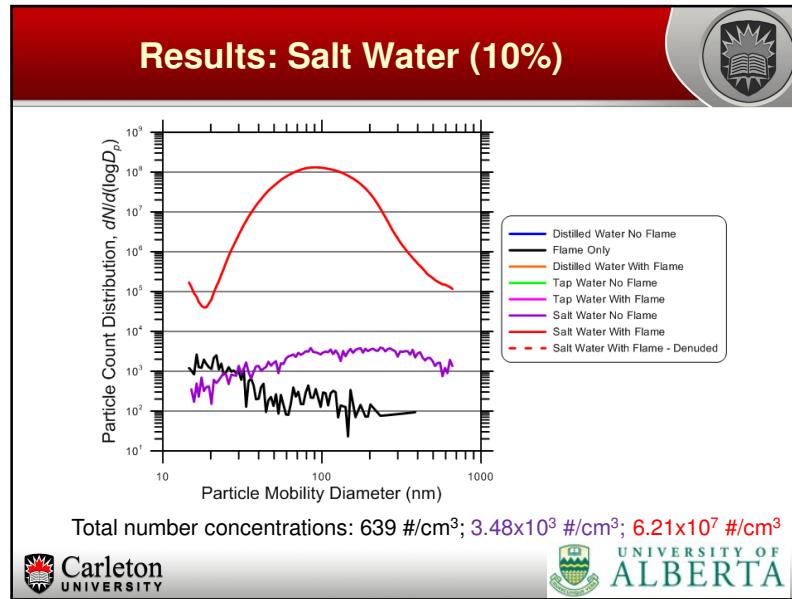

Particle Count & Sizing Measurements

▪ Scanning Mobility Particle Sizer (SMPS)

- Differential Mobility Analyzer (DMA)
 - Classifies particles by electrical mobility which is proportional to particle size
- Particle Counter (CPC)
 - Condenses vapour onto particles to make them large enough to count in a laser beam


Results: Distilled Water

Total number concentrations: 639 #/cm³; 497 #/cm³; 1350 #/cm³

Results: Tap Water

Total number concentrations: 639 #/cm³; 2.65x10³ #/cm³; 3.65x10⁶ #/cm³

Challenges for Flares:
4. Mitigation of Higher-hanging Fruit?

Carleton UNIVERSITY

M&AE Department of Mechanical & Aerospace Engineering 53

Future Directions

■ PTAC/CAPP RFP to study air emissions from hydrofracturing awarded to Carleton/Clearstone Engineering collaboration

■ Environment Canada looking to fund broader analysis of flaring/venting mitigation opportunities:

- Include other provinces
- Further analysis of aggregation potential (see next slide)
- Opportunity for members of this forum to collaborate

Carleton UNIVERSITY

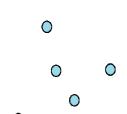
55

Recent Progress

■ Technoeconomic analysis case-study on mitigation potential for individual batteries in Alberta recently published

- Johnson & Coderre, *Int. J. Greenhouse Gas Control*, 8:121-131, 2012. (doi: 10.1016/j.ijgac.2012.02.004)

■ Positive feedback and interest from a number of sources

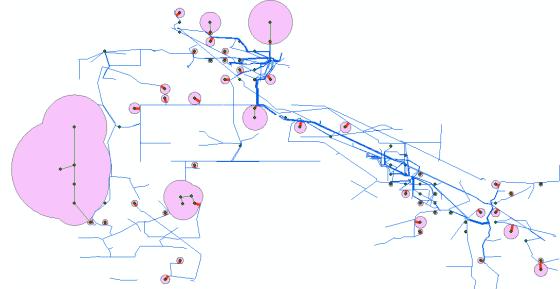

Carleton UNIVERSITY

54

Peak at Opportunities for Mitigation Analysis

■ Some of the largest mitigation potential lies in possibility of low-pressure gas collection options to share infrastructure costs

■ Non-trivial problem:



Carleton UNIVERSITY

56

Peak at Opportunities for Mitigation Analysis

- Low-pressure gas collection options

- Further possible opportunities with Clearstone Eng. Analyzing mitigation based on economics of high-value liquid / higher-hydrocarbon recovery

57

Final Thoughts on the Bigger Picture

- Significant progress has been made in a number of fronts (research, regulation, technology, operating practices) and in a number of jurisdictions
- Still, there are many significant remaining and emerging challenges for flaring and venting driven primarily by increased attention on short-lived climate forcers, rapid development, and emerging dominance of hydrofracturing
- Opportunities to continue leading on a number of these fronts

58

Particulate Matter Emissions from Flares

- Collaborators & Funding Partners

CANADIAN ASSOCIATION
OF PETROLEUM PRODUCERSGlobal Gas Flaring Reduction
A Public-Private PartnershipARC-CNR
CanadaPETROLEUM
TECHNOLOGY
ASSOCIATION
OF CANADA

59

Current Research Team

- Principle Investigators:
 - Matthew Johnson, *Canada Research Chair in Energy & Combustion Generated Pollutant Emissions*, Associate Prof., Carleton University
 - Kevin Thomson, *Research Officer*, National Research Council
 - Jason Olfert, *Assistant Prof.*, University of Alberta
- Graduate Students / Post Doctoral Fellows:

• Carol Brereton, <i>M.A.Sc. candidate</i>	Darcy Corbin, <i>M.A.Sc. candidate</i>
• Brian Crosland, <i>Ph.D. candidate</i>	Robin Devillers, <i>Post. Doc.</i>
• Ian Joynes, <i>M.A.Sc. candidate</i>	Clifton Pereira, <i>M.A.Sc. candidate</i>
• Stephen Schoonbaert, <i>M.A.Sc. cand.</i>	David Tyner, <i>Post. Doc.</i>
• Mohsen Kazemimanesh, <i>M.A.Sc. cand. (U of A)</i>	
- Graduates:
 - Pervez Canteenwalla, *M.A.Sc. 2007* Adam Coderre, *M.A.Sc. 2009*
 - James McEwen, *M.A.Sc. 2010*, Stephanie Trottier, *M.A.Sc. 2005*
 - Chen Yang, *M.A.Sc. 2008*

60