

Environment
Canada

Environnement
Canada

Canada

Clean Air Regulatory Agenda – Regulatory Framework for Industrial Air Emissions

**Information Sharing at Flaring and Venting Regulators
Workshop- June 15, 2007**

Lynne Patenaude, Environment Canada

Objectives

- Share information on proposed approach with Canadian flaring and venting regulators
- Provide clarification and answer questions, as needed
- Extend invitation to participate or receive information on Environment Canada's consultations with on-shore and off-shore upstream oil and gas sector (Environment departments in each jurisdiction and other federal departments have already been engaged)

The Federal Government is following through on its October commitment

- The Notice of Intent (October 21, 2006) publicly stated the Government of Canada's commitment to develop a regulatory framework for air emissions
- The government consulted extensively with key stakeholders in November-December 2006
- Individual Canadians had the opportunity to submit formal comments over a 60 day period
- Consultations and formal comments were instrumental in shaping/refining the Regulatory Framework for Air Emissions

Regulatory Framework addresses more than just industrial emissions

- Actions for transportation will include a mandatory fuel-efficiency standard for autos
- New standards and regulations will also be developed for rail, marine, aviation, and on-road and off-road vehicles and engines
- New performance standards for consumer and commercial products
- Actions to improve indoor air quality

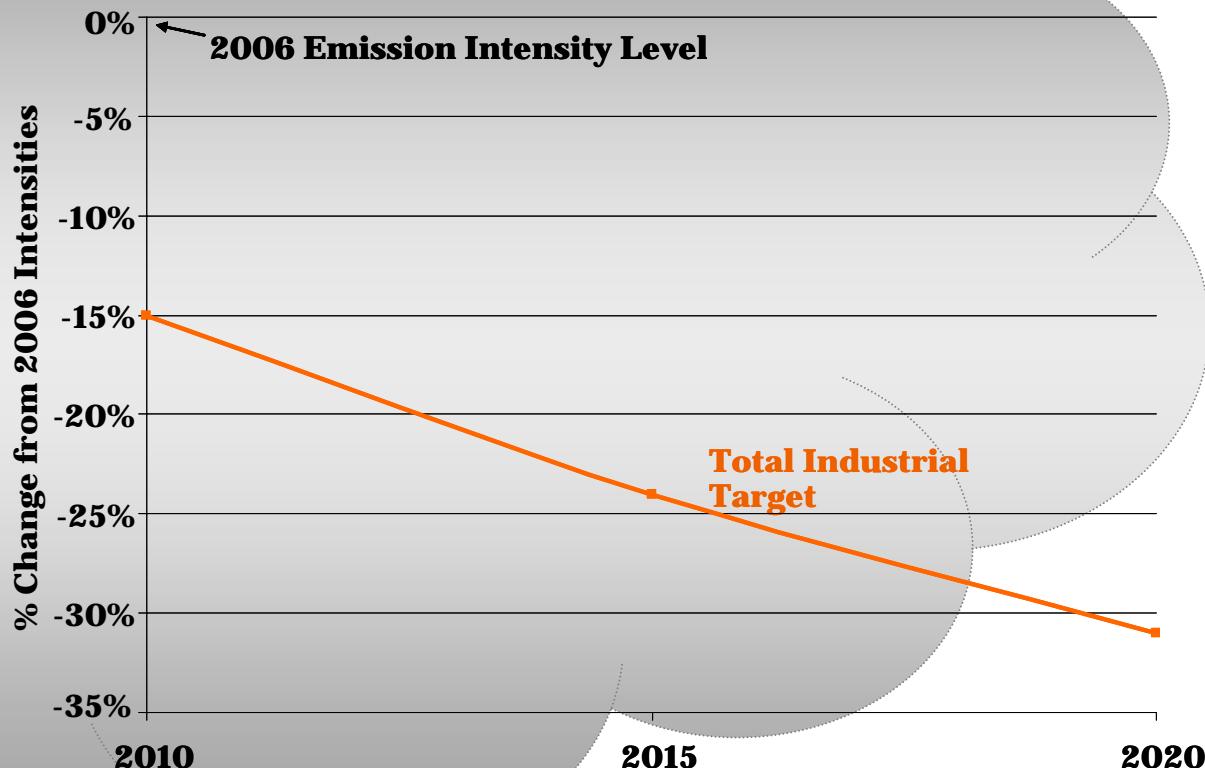
Environment
Canada

Environnement
Canada

Canada

Greenhouse Gases

Greenhouse gas emission targets


Target

Existing facilities

- 6% improvement each year from 2007 to 2010, giving an enforceable 18% reduction from 2006 emission intensity in 2010
- 2% annual improvement thereafter

New facilities

- 3 year grace period
- Clean fuel standard
- 2% annual improvement

Greenhouse gas compliance options

Ways to comply

In-house reductions

Climate Change Technology fund: one fund/two components

- Deployment & Infrastructure: focus on opportunities for near term emission reductions: access as % of total target over 2010-2017 period - 70%, 65%, 60%, 55%, 50%, 40%, 10%, 10%
- Research & Development: focus on new transformative technologies: access over 2010-2017 period - 5 Mt annually
- Explore credit for certified project investments
- Contribution rate to funds (\$/tonne over 2010-2017 period) - \$15, \$15, \$15, \$20, \$20 escalating with GDP

Trading

- Domestic inter-firm trading
- Access to domestic offsets
- Access to the Clean Development Mechanism at 10% of firms' total target
- Actively explore Canada-US linkages

Credit for early action of 15 Mt

- With a maximum of 5Mt any given year

Where estimated Upstream Oil and Gas GHG reductions would be

Estimated Reductions					
	Sector Average	For Existing Facilities		For All Facilities	
	Estimated Fixed Process Emissions (% of Total Emissions)	Estimated % Reduction from Year 2006 Emission Intensity	Estimated Mt Reduction from Levels Projected for That Year	Estimated % Reduction from Year 2006 Emission Intensity	Estimated Mt Reduction from Projected Emission Levels
2010	0%	18%	6.9	18%	6.9
2015	0%	26%	8.9	26%	8.9
2020	0%	33%	8.4	33%	8.4

Environment
Canada

Environnement
Canada

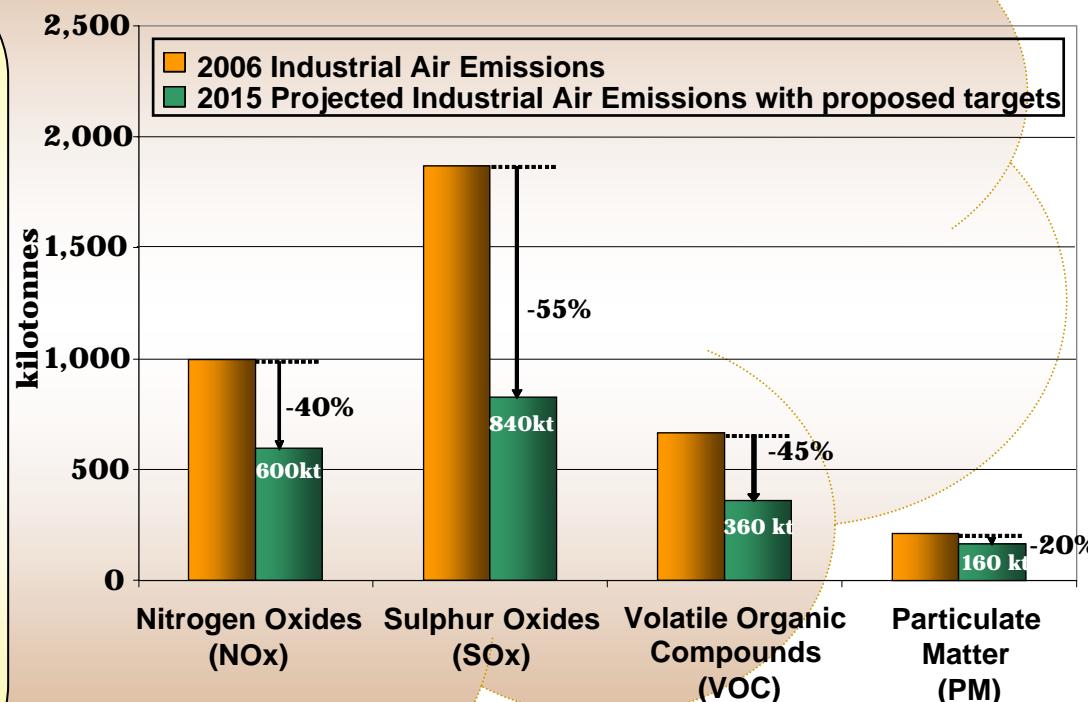
Canada

Air Pollutants

Air pollutant targets are aligned with the best in the world

- Benchmarking to other jurisdictions
 - Examined the most stringent standards for each pollutant in each sector in Canada (provinces), in the U.S., and internationally
 - Where no benchmark exists, targets developed based on specific activities and equipment in similar sub-sectors (e.g.: oilsands)
 - Adjustment to Canadian circumstances where appropriate
- Identified sectoral targets based on these stringent regulatory emissions requirements
- Calculated national caps for the four main smog-forming pollutants

Air pollutant emission targets


Targets

NATIONAL CAPS for 2012 to 2015
(% reduction from
2006 emissions)

- NOx – 600 kt Cap (~40%)
- SOx – 840 kt Cap (~55%)
- VOCs – 360 kt Cap (~45%)
- PM – 160 kt Cap (~20%)

+
SECTOR SPECIFIC CAPS for 2012
to 2015

ALL TO BE VALIDATED BY JUNE
2007, INCLUDING THE DATE OF
COMING INTO FORCE

Environment
Canada

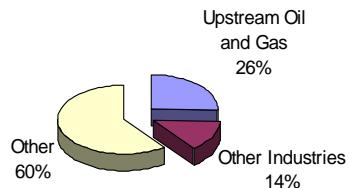
Environnement
Canada

Air pollutant compliance options

Ways to comply

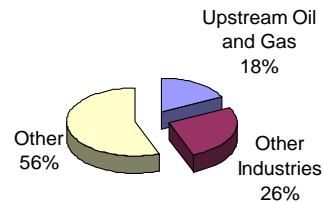
In-house Reductions

- Fuel switching
- Equipment and Process Upgrades
- Control technologies

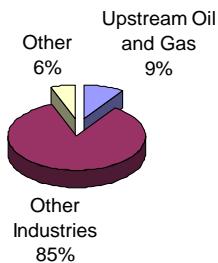

Domestic Trading for NOx and SOx

- Cap and trade system
- Feasibility of offsets will be assessed

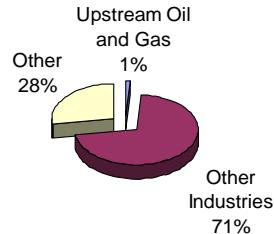
Pursue discussions on Canada- US trading for NOx and SOx


Contribution of Upstream Oil & Gas (excluding oil sands)

National VOC Emissions in 2005


Total 2005 VOC emissions*: 1,935 kt

National NO_x Emissions in 2005


Total 2005 NOx emissions*: 2,377 kt

National SO₂ Emissions in 2005

Total 2005 SO₂ emissions*: 2,058 kt

National TPM Emissions in 2005

Total 2005 TPM emissions*: 768 kt

*Excluding open sources

Source: Environment Canada, Pollution Data Division (PDD), 2005 CAC Emissions Inventory (March 2007)

Environment
Canada

Environnement
Canada

Benchmarking Approach

Upstream Oil & Gas (excluding oil sands)

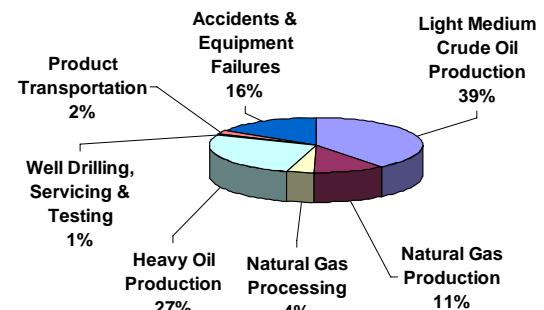
- Review of Regulatory Regimes
 - Canada – Federal & Provincial
 - No facility limits for substances
 - Process unit requirement or limits in Alberta & British Columbia
 - Alberta is the leading Canadian jurisdiction
 - United States – Federal & States
 - No facility limits for substances
 - Process unit requirements or limits at the Federal level & in some States
 - State requirements are generally set in non-attainment areas
 - Federal level has the leading U.S. requirements in many cases
 - State level requirements for non-attainment areas may have some more stringent requirements in some instances

Benchmarking Approach (cont'd-1)

Upstream Oil & Gas (excluding oil sands)

- Review of Regulatory Regimes – cont'd
 - European Union, Australia, Norway, United Kingdom, Germany, Austria, New Zealand
 - Limits based on a permit by permit basis, based on best available technology
 - Varying requirements for on-shore vs. off-shore & policy driver for that jurisdiction – GHG, acid rain, smog
- Review of Technology Options
 - Considered implementation of best available technologies or better operating practices and potential reduction of emissions
 - Reviewed Canadian facility emissions performance

Summary of Air Pollution Targets


for upstream oil & gas (excluding oil sands)

Pollutant	Sector target (in kt/y)	2015 projected emissions (kt)	% reduction in 2015	2006 estimated emissions (kt)	% reduction in 2015 from 2006 levels
SOx	145	170	-15%	195	-25%
NOx	235	428	-45%	424	-45%
VOC	160	400	-60%	495	-65%
PM	Reductions achieved through meeting above caps				
Benzene	1.3	Not Available	Not Available	1.9	-35%

VOCs & Benzene Emissions & Sources

Upstream Oil & Gas (excluding oil sands)

- 26% of total 2005 VOC emissions in Canada
- Over 10% of total 2003 benzene emissions in Canada⁶
- VOCs originate from all conventional upstream oil and gas activities
 - >200,000 facilities, many small and large individual sources at each facility
- Main sources of VOCs
 - Tanks ~ 32%
 - Equipment Leaks ~ 25%
 - Venting ~ 20%
 - Accidents & Equipment Failures ~ 16%
 - Loading Losses ~ 3%
 - Dehydrators ~ 2%
 - Combustion ~ 2%
- Glycol dehydrators are the main source of benzene from upstream oil and gas

2000 VOC Emissions (540 kt)¹

VOCs – Assessed Emission Reduction Potential

Upstream Oil & Gas (excluding oil sands)

- 10% reduction from all reported venting sources
- Additional 68% reduction from reported venting sources for heavy oil production in Saskatchewan
 - Heavy oil production only occurs in Alberta & Saskatchewan
- 70% reduction in fugitive emissions & storage tanks
- 50% reduction in loading losses
- 30% reduction from accidents & equipment failures – as a result of better operating practices
- 33% reduction from unreported venting sources
- 35% reduction from dehydrators

VOCs & Benzene – Sector Specific Target

Upstream Oil & Gas (excluding oil sands)

- Targets set by calculating the potential emissions reductions that result from:
 - VOCs – implementing various technology or better operating practices
 - Benzene – implementing 1 tonne per year per dehydrator limit
- Manage VOCs, in part, through regulated codes of practice

Pollutant	Sector target (in kt/y)	2015 projected emissions (kt)	% reduction in 2015	2006 estimated emissions (kt)	% reduction in 2015 from 2006 levels
VOC	160	400	-60%	495	-65%
Benzene	1.3	Not Available	Not Available	1.9	-35%

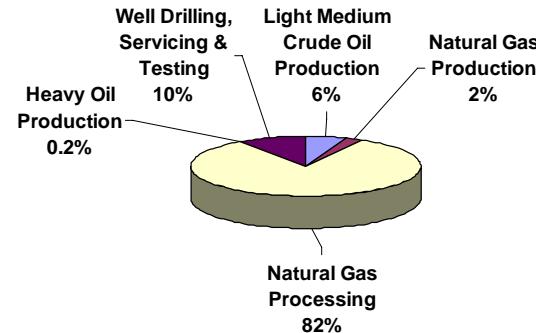
Framework will be implemented working with provinces/territories, industry and stakeholders

- Work being undertaken is to:
 - Validate sector-specific air pollutant targets by Fall 2007, including their date of coming into force
 - Translate greenhouse gas target structure into sector-specific regulatory targets
 - Address the scope of offsets system and the administration of technology fund
 - Develop sector-specific air emissions regulations
- Finalize air pollutant regulatory framework by fall 2007
- Begin publication of draft regulations by spring 2008
- Finalize all regulations by 2010

Environment
Canada

Environnement
Canada

Canada


Annex

SO₂ Emissions & Sources

Upstream Oil & Gas (excluding oil sands)

- 9% of total 2005 SO₂ emissions in Canada
- Main sources of SO₂
 - 98% of SO₂ from flaring
 - 82% of flaring from sour gas processing (over 200 facilities)
 - 2% from fuel combustion
- Sour gas processing includes:
 1. Sulphur recovery plants – recovery of sulphur, the remaining acid gas is incinerated
 2. Flaring plants – acid gas is flared
 3. Acid gas injection plants – acid gas is re-injected into reservoirs
- 30% of Canada's natural gas is sour and this proportion is increasing for conventional resources
 - Composition of raw natural gas varies and will require more processing depending on the sulphur content

2000 SO₂ Emissions (265 kt)¹

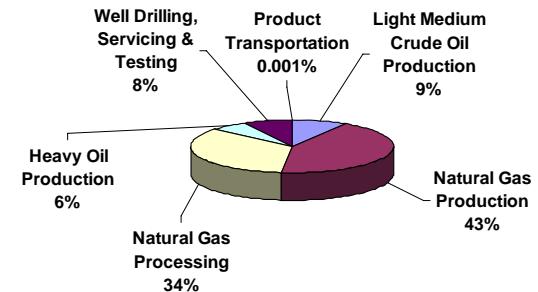
SO2 – Benchmarking Sour Gas Processing Emissions Performance (cont'd-1)

Upstream Oil & Gas (excluding oil sands)

- Average performance of flaring, sulphur recovery and injection plants were benchmarked
- Benchmarked using leading technology (injection)
 - Assumed an emission intensity of 1.0 tonnes/MMcm throughput
- Data available in excel file

SO2 – Sector Specific Target

Upstream Oil & Gas (excluding oil sands)


- Target set by calculating the potential emission reductions that result from achieving average Canadian emissions performance
- Assumed 15% reduction from 2015 forecast achievable based on:
 - 18% calculated reduction potential from benchmarking
 - Uncertainty in data
 - 2000 data set rather than more recent & only for matched data set
 - De-grandfathering achieved by 2015 rather than 2017

Pollutant	Sector target (in kt/y)	2015 projected emissions (kt)	% reduction in 2015	2006 estimated emissions (kt)	% reduction in 2015 from 2006 levels
SOx	145	170	-15%	195	-25%

NOx Emissions & Sources

Upstream Oil & Gas (excluding oil sands)

- 18% of total 2005 NOx emissions in Canada
- NOx originates from all conventional upstream oil and gas activities
 - >200,000 facilities, many more individual sources at facilities
 - Fuel combustion accounts for 99.9% of NOx sector emissions¹
 - Includes reciprocating engines, turbines, diesel engines, heaters/boilers
 - Reciprocating engines account for the majority of fuel combustion sources in this sector and represent 84% of NOx emissions²

2000 NOx Emissions (369 kt)¹

NOx – Assessed Emission Reduction Potential

Upstream Oil & Gas (excluding oil sands)

- New engines:
 - Half of existing engines changed out by 2015
 - Assumed:
 - New engines meeting most stringent US EPA limit of 2.7 g/KWhr
 - 84% of NOx emissions originates from reciprocating engines
- Existing engines:
 - Applied a 60% emission reduction potential for existing engines using new technology or better operating practices, such as REM Vue technology
 - Assumed:
 - 84% of NOx emissions originates from reciprocating engines
 - 75% of existing engines do not use low-NOx technologies

NOx – Sector Specific Target

Upstream Oil & Gas (excluding oil sands)

- Target set by calculating the potential emission reductions that result from:
 - Accelerated change out of existing engines to new which meet more stringent engine requirements
 - Implementation of new technology or better operating practices to existing engines

Pollutant	Sector target (in kt/y)	2015 projected emissions (kt)	% reduction in 2015	2006 estimated emissions (kt)	% reduction in 2015 from 2006 levels
NOx	235	428	-45%	424	-45%

Benzene – Assessed Emission Reduction Potential

Upstream Oil & Gas (excluding oil sands)

- 2003 most recent year with data on benzene emissions from glycol dehydrators - CAPP 2004 Benzene Report
- Calculated potential reduction based on all glycol dehydrators meeting a 1 tonne per year per dehydrator emission rate