

NEWFOUNDLAND & LABRADOR

Prospect • Discover • Develop

Browning Gold Mine

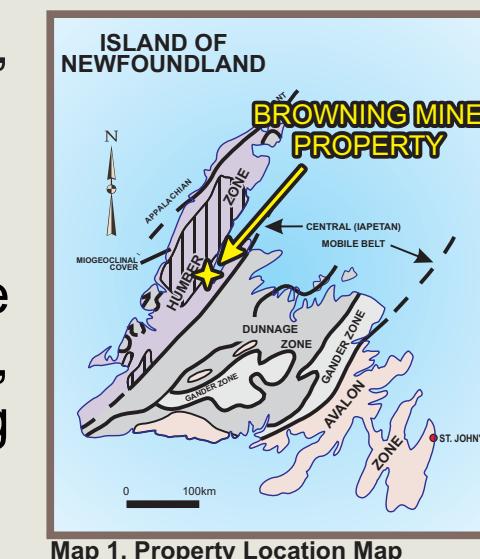
Map 2: Claims Location/Property geology

Source: Crisby-Whittle, L. V. J. (compiler) 2012: Partial bedrock geology dataset for the Island of Newfoundland. Newfoundland Department of Mines and Energy, Geological Survey, Open File NFLD/2616 version 7.0.

Mineral Occurrence Database - Geological Survey, Department of Natural Resources Website: <http://www.gov.nl.ca/mines&en/geosurvey>

Highlights:

- Several historic Au showings
- Browning Mine: recent assay up to 316 g/t Au, 188 g/t Ag
- Coincident with regional fault zone
- Extensive sericite-carbonate alteration
- Simms Ridge Showing - up to 6.2 g/t Au, 60 g/t Ag
- Browning West prospect - up to 4.8 g/t Au
- Model: Orogenic lode Au


some of which carried gold. Trenching and sampling produced assays up to **4.8 g/t Au** (McKenzie, 1987). Diamond drilling was limited to two holes, from which the best assay was **2.7 g/t Au over 2 m**, and no further work was conducted (McKenzie, 1987). In a review of exploration opportunities in the area, Scott (1990) suggested that further work was warranted. Portions of one drillhole were briefly examined in 2005, and reveal a complex assemblage of mafic and felsic metavolcanic rocks.

At the **Wizard Prospect**, auriferous quartz veins occur in felsic, fine to lapilli tuffs with minor rhyolite at the upper contact with mafic volcanics. These rocks are strongly sericitized and locally pyrophyllitized. Values of **5.3 g/t Au in grab samples and 2.3 g/t Au over 2.4 m in trench samples** have been recorded. Diamond drilling traced the quartz zone at the Wizard Showing for a strike length of 285 m and to a depth of 50 m. Assays greater than **1000 ppb Au** were recorded in two holes (W4 and W5) (O'Sullivan, 1986).

The **Claim 59 Showing** consists of quartz-pyrite veins, one striking N-S the other approximately 60 degrees toward the east. **Au values up to 5.6 g/t** have been returned from samples of these veins, which are hosted by a strongly cleaved pyritic sericite schist. This area could represent mineralization on the sole of a thrust fault (Burton, 1987).

Mineralization Model

The known gold mineralization lies mostly in the region south of Sop's Arm, where it occurs in the volcanic rocks of the Pollards Point Formation and adjacent sedimentary rocks of the Simms Ridge Formation. The suggestion that the base of the latter formation represents an important structural break within the Sop's Arm group implies a large-scale structural control in which gold is spatially linked to the Long Steady fault zone. Relationships of this type are common in orogenic gold belts, where major structures act to focus fluid flow and aid in the development of structural traps. Previous workers suggested that the major structural break defined by the Doucet's Valley fault zone exerts a regional control on gold and other mineralization (e.g., Tuach, 1987), and this may still hold true, but the Long Steady fault zone may be the specific controlling structure in the Silurian rocks.

Map 1. Property Location Map

The **Browning Mine Property** is located approx 2 km south of the community of Pollards Point in White Bay, western Newfoundland (NTS 12H/10). The area is accessible from Highway 420 and logging roads.

Regional Geology

The property lies within the eastern Humber Zone of the Newfoundland Appalachians (Maps 1 and 2). The principal geological unit in the area is the Silurian Sop's Arm Group, comprising mafic to felsic volcanics, conglomerates and mostly clastic sedimentary rocks. A number of NE-striking faults in the area developed during the Acadian Orogeny and are believed to be linked to mineralization.

Local Geology

The property is underlain by the eastern and western sequences of the Sop's Arm Group, separated, at least in part, by the Long Steady Fault Zone LSFZ (Kerr, 2006) (Map 2). The eastern sequence is represented by deformed and metamorphosed slate, limestone and tuff of the Simms Ridge Formation. The western sequence consists of a lower package of felsic volcanic and pyroclastic rocks, lesser mafic volcanics and conglomerates, overlain by a fining-upward sequence of terrestrial to fluvial sedimentary rocks dominated by conglomerates and sandstones.

Mineralization

Vein-hosted Au occurs mostly in the Lower Volcanic Unit or overlying siltstones and carbonate of the Simm's Ridge Formation. There may be a spatial association of Au with the inferred faulted contact between these units (Kerr, 2006). Several Au and Cu showings occur on the Property. The best known is the **Browning Mine**, where Au mineralization is hosted by quartz-carbonate+Py+Cpy+Zn+Pb veins in calcareous sedimentary rocks (Simms Ridge Formation) spatially related to the LSFZ and close to the contact with the Lower Volcanic Unit. Systematic sampling of quartz veins exposed in and around the old mine yielded **0.5 g/t Au to 30 g/t Au**, and **9 samples contain >4 g/t Au**. Two samples from discrete, thin quartz-carbonate veins in the river bed north of the adit contained **122 g/t and 316 g/t Au** respectively, confirming the locally high grades noted in the earliest reports. Silver values for auriferous samples are also high, ranging up to **188 g/t Ag** (in the sample containing 316 g/t Au). The highest-grade vein is narrow (**4 to 8 cm wide**) **chalcocite-rich (>5% Cu)**, and contains **visible gold**. The drilling completed by BP-Selco in the 1980s was mostly at the old mine site and along strike to the south, rather than to the north of the mine, where these high values occur.

Historic assays from the **Simms Ridge Au-Ag-Pb-Cu Prospect** yielded up to **5.23 oz/t Au and 47 oz/t Ag** (grab sample) and **0.13 oz/t Au** (channel sample). Host rocks are cleaved shales and siltstones. The siltstones are sericitic, but not as strongly sericitic as those at the Browning Mine. Particularly intense sericitization occurs along the eastern side of the zone. There appear to be several discrete quartz veins with widths in the 10s of cm, which occur both in siltstones and felsitic unit, but are more abundant in the latter. Recent work returned 6 samples of mineralized veins contain **0.5 g/t to 6.2 g/t Au, and 8 g/t to 60 g/t Ag**. Some samples also contain **significant Pb, up to 1.9 wt%**. Higher Au values are accompanied by the highest Ag and Pb values.

The **Browning West Prospect**, located west of the Browning Mine, was originally defined as an area of interest by soil surveys, and subsequent prospecting revealed altered volcanic rocks, containing quartz-carbonate veins and lenses,

FOR MORE INFORMATION CONTACT:

Wes Keats

Tel: (709) 424 6037

E-Mail: keatsw@hotmail.com